Skip to main content
Log in

Magnitude and variations of groundwater seepage along a Florida marine shoreline

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Direct groundwater inputs are receiving increasingattention as a potential source of nutrients and otherdissolved constituents to the coastal ocean. Seepageinto St. George Sound, Florida was measuredextensively from 1992 to 1994 using seepage meters. Spatial and temporal variations were documented alonga 7-km stretch of coastline and up to 1 km from shore. Measurements were made at 3 transects perpendicular toshore and 1 transect parallel to shore. The generalresults indicated that seepage decreased with distancefrom shore (2 of 3 transects), and substantialtemporal and spatial variability was observed inseepage flow from nearshore sediments. In addition,trends in mean monthly integrated seepage rates weresimilar to precipitation patterns measured at a nearbycoastal weather station. Based on these measurements, weestimate that the magnitude of groundwater seepage intothe study area is substantial, representing from 0.23 to4.4 m3 ⋅ sec-1of flow through the sediments, approximately equivalentto a first magnitude spring. Although it is unknown howrepresentative this region is with respect to globalgroundwater discharge, it demonstrates thatgroundwater flow can be as important as riverine andspring discharge in some cases. Our subsurfacedischarge rates suggest groundwater is an importanthydrologic source term for this region and may beimportant to the coastal biogeochemistry as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belyaev AV (1977) Integrated dependence of the water budget of the principal geographical zones of the world, Akad. Nauk. SSSR ser. geograph. No. 1. Summarized In: World Resources 1990-91, Ch 10, "Freshwater," Oxford University Press

  • Bokuniewicz H (1980) Groundwater seepage into Great South Bay, New York. Estuaries and Coastal Marine Science 10: 257–288

    Google Scholar 

  • Brock TD, Lee DR, Janes D & Winek D (1982) Groundwater seepage as a nutrient source to a drainage lake: Lake Mendota, Wisconsin. Water Research 16: 1255–1263

    Google Scholar 

  • Cable JE, Burnett WC, Chanton JP, Corbett DR & Cable PH (1996) A field evaluation of seepage meters in a coastal marine environment. Estuarine, Coastal and Shelf Science, in press

  • Cathles LM & members of Working Group 3 (1987) Fluid circulation in the crust and the global geochemical budget. In: Report of the Second Conference on Scientific Ocean Drilling, COSOD II (pp 67–86). Strasbourg, France

  • Connor JN & Belanger TV (1981) Groundwater seepage in Lake Washington and the Upper St. John's River, Florida. Water Resources Bulletin 17(5): 799–805

    Google Scholar 

  • Fernald EA & Patton DJ (1985) Water Resources Atlas of Florida. Florida State University, Tallahassee, Florida, 291 pp

    Google Scholar 

  • Garrels RM & MacKenzie FT (1967) Evolution of Sedimentary Rocks. Norton & Co

  • Hendry C & Sproul C (1966) Geology and groundwater resources of Leon County, Florida. Florida Geol. Surv. Bull. No. 47: 1–178

    Google Scholar 

  • Iverson RL & Bittacker HF (1986) Seagrass distribution and abundance in eastern Gulf of Mexico coastal waters. Estuarine, Coastal and Shelf Science 22: 577–602

    Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr. 22: 140–147

    Google Scholar 

  • Lee DR & Cherry JA (1978) A field exercise on groundwater flow using seepage meters and mini-piezometers. J. Geological Educ. 27: 6–10

    Google Scholar 

  • Lee RW & Hollyday EF (1993) Use of radon measurements in Carters Creek, Maury County, Tennessee, to determine location and magnitude of ground-water seepage. In: LCS Gundersen & RB Wanty (Eds) Field Studies of Radon in Rocks, Soils, and Water (pp 237–242). C K Smoley Publishing Co

  • Lesack LFW (1995) Seepage exchange in an Amazon floodplain lake. Limnol. Oceanogr. 40(3): 598–609

    Google Scholar 

  • Lewis JB (1987) Measurements of groundwater seepage flux onto a coral reef: Spatial and temporal variations. Limnol. Oceanogr. 32(5): 1165–1169

    Google Scholar 

  • Manheim FT (1967) Evidence for submarine groundwater discharge of water on the Atlantic continental slope of the southern United States, and suggestions for further research. New York Academy of Sciences Transactions, ser. 2 29: 839–853

  • McBride MS & Pfannkuch HO (1975) The distribution of seepage within lake beds. United States Geological Survey J. Res. 3: 505–512

    Google Scholar 

  • Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380: 612–614

    Google Scholar 

  • Morris A (1995) The Florida Handbook. Peninsular Publ. Co., Tallahassee, Florida, 763 pp

    Google Scholar 

  • Nace RL (1967) Are we running out of water? US Geological Survey Circ. 536: 7 pp

  • Nace RL (1970) World Hydrology: status and prospects. In: World Water Balance (pp 1–10), I. Symposium for the Association of Internationale D'Hydrologie Scientifique PublicationNo. 92

    Google Scholar 

  • Rosenau J, Faulkner G, Hendry C & Hull R (1977) Springs of Florida. US Geol. Surv. Bulletin No. 31: 1–461

    Google Scholar 

  • Shaw RD & Prepas EE (1989) Anomalous, short-term influx of water into seepage meters. Limnol. Oceanogr. 34: 1343–1351

    Google Scholar 

  • Shaw RD & Prepas EE (1990a) Groundwater-lake interactions: II. Nearshore seepage patterns and the contribution of ground water to lakes in CentralAlberta. J.Hydrology 119: 121–136

    Google Scholar 

  • Shaw RD & Prepas EE (1990b) Groundwater-lake interactions: II. Accuracy of seepage meter estimates of lake seepage. J. Hydrology 119: 105–120

    Google Scholar 

  • Shaw RD, Shaw JFH, Fricker H & Prepas EE (1990) An integrated approach to quantify groundwater transport of phosphorus to Narrow Lake, Alberta. Limnol. Oceanogr. 35: 870–886

    Google Scholar 

  • Wagner JR (1989) Potentiometric surface of the Floridan aquifer system in the northwest Florida water management district. Northwest Florida Water Management District Water Resources Map Series 89-001

  • Zektzer IS, Ivanov VA & Meskheteli AV (1973) The problem of direct groundwater discharge to the seas. J. Hydrology 20: 1–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CABLE, J.E., BURNETT, W.C. & CHANTON, J.P. Magnitude and variations of groundwater seepage along a Florida marine shoreline. Biogeochemistry 38, 189–205 (1997). https://doi.org/10.1023/A:1005756528516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005756528516

Keywords

Navigation