Skip to main content
Log in

Environmental Isotopes for Resolution of Hydrology Problems

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The use of environmental isotopes as tracers in the hydrosphere is increasing as analytical instrumentation improves and more applications are discovered. There exists still misconceptions on the role of isotopes in resolving hydrology problems. Naturally occurring isotopes in the environment describe hydrological processes, estimate ages, fingerprint sources and pathways, yet are not subject to the regulatory restraints of artificial isotope injections nor the limited extent of many chemical tracers, particularly dyes and particulates. A short review is presented for practicing hydrologists on the basis for employing stable and radioactive isotopes and a synopsis of recent isotope hydrology applications is provided. Special focus is presented on the emergent role of water isopopes (18O, 2H, 3H) in wet-weather flow research in urban watersheds. A brief technical approach for an experimental site in the Mill Creek Watershed, Ohio is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aravena, R., Evans, M. L. and Cherry, J. A.: 1993, 'Stable Isotopes of Oxygen and Nitrogen in Source Identification of Nitrate and Septic Systems', Ground Water 31, 180–186.

    Google Scholar 

  • Betson, R. P.: 1964, 'What is Watershed Runoff?' J. Geophys. Res. 69, 1541–1542.

    Google Scholar 

  • Bishop, P. K., Smalley, P. C., Emert, D. and Dickson, J. A.: 1994, 'Strontium Isotopes as Indicators of the Dissolving Phase in a Carbonate Aquifer: Implications for 14C Dating of Groundwater', J. Hydrol. 154, 301–321.

    Google Scholar 

  • Buttle, J. M., Vonk, A. M. and Taylor, C. H.: 1995, 'Applicability of Isotopic Hydrograph Separation in a Suburban Basin During Snowmelt', Hydrol. Proc. 9, 197–121.

    Google Scholar 

  • Clark, I. and Fritz, P.: 1997, Environmental Isotopes in Hydrogeology, Lewis Publ., 328 pp.

  • Coplen, T. B.: 1993, 'Uses of Environmental Isotopes', in: Alley, W. M. (ed.), Regional Water Quality, Van Nostrand Reinhold, pp. 227–254.

  • Cohen, S.: 1995, 'Surface Water–Ground Water Interactions', Ground Water Mon. Remed. Summer, 80–81.

  • Craig, H. and Gordon, L. I.: 1965, 'Deuterium and Oxygen-18 Variations in the Ocean and Marine Atmosphere', in Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, 9–130.

  • Daniels, D. P., Fritz, S. J. and Leap, D. I.: 1991, 'Estimating Recharge Rates Through Unsaturated Glacial Till by Tritium Tracing', Ground Water 29, 26–34.

    Google Scholar 

  • Davis, S. N., Thompson, G. H., Bentley, H.W. and Stiles, G.: 1980, 'Ground-Water Tracers: A Short Review', Ground Water 18, 14–23.

    Google Scholar 

  • Davis, S. N., Campbell, D. J., Bentley, H.W. and Flynn, T. J.: 1985, An Introduction to Ground-Water Tracers. USEPA/600/S2-85/022. 201 pp.

  • Davisson, M. L. and Criss, R. E.: 1993, 'Stable Isotope Imaging of a Dynamic Groundwater System in the Southwestern Sacramento Valley, California, USA', J. Hydrol. 144, 213–246.

    Google Scholar 

  • Deines, P.: 1980, 'The Isotopic Composition of Reduced Organic Carbon' in: Fritz, P. and Fontes, J. C. (eds.), Handbook of Environmental Isotope Geochemistry, pp. 329–406.

  • Dunne, T. and Black, R. D.: 1970, 'Partial Area Contributions to Storm Runoff in a Small New England Watershed', Water Resour. Res. 6, 1296–1311.

    Google Scholar 

  • Durrance, E. M.: 1986, Radioactivity in Geology, Halsted Press, 411 pp.

  • Eichlinger, W. E., Parlange, M. B. and Sticker, H.: 1996, 'On the Concept of Equilibrium Evaporation and the Value of the Priestley-Taylor Coefficient', Water. Resour. Res. 32, 161–164.

    Google Scholar 

  • Ekwurtzel, B., Schlosser, P., Smethie, W. M., Plummer, L. N., Busenberg, E., Michel, R. L., Weppering, R., and Stute, M.: 1994, 'Dating of Shallow Groundwater: Comparison of the Transient Tracers 3H/3He, Chlorofluorocarbons, and 85Kr', Water Resour. Res. 30, 1693–1708.

    Google Scholar 

  • Exner, M. E. and Spalding, R. F.: 1994, 'N-15 Identification of Nonpoint Sources of Nitrate Contamination Beneath Cropland in the Nebraska Panhandle: Two Case Studies', Appl. Geochem. 9, 73–81.

    Google Scholar 

  • Faure, G.: 1986, Principles of Isotope Geology, John Wiley & Sons, 589 pp.

  • Field, M., Wilhelm, R. G., Quinlan, J. F. and Aley, T. J.: 1995, 'Fluorescent Tracer Dyes Used for Groundwater Tracing', Env. Monitor. Assessment, 38, 75–96.

    Google Scholar 

  • Fontes, J. C.: 1983, 'Dating of Groundwater', in Guidebook on Nuclear Techniques in Hydrology, IAEA, Tech. Rept. Ser. 191, 285–317.

  • Friedman, I. and O'Neil, J. R.: 1977, 'Compilation of Stable Fractionation Factors of Geochemical Interest: Data of Geochemistry', U.S. Geo. Surv. Prof. Pap, 440 KK.

  • Fritz, P. and Fontes, J. C.: 1980, Handbook of Environmental Isotope Geochemistry. 1. Elsevier, Vol. 1, 557 pp.

  • Fritz, P. and Fontes. J. C.: 1986, Handbook of Environmental Isotope Geochemistry. Elsevier, Vol. 2, 545 pp.

  • Frohlich, K. Franke, T., Gellerman, R., Herbert, D. and Jordan, K.: 1986, 'Silicon-32 in Different Aquifer Types and Implications for Groundwater Dating', in: IAEASM299/ 72, pp. 149–163.

  • Garcia, E., Goncalves, S., Francisco, J. T. and Shinomiya, C. N.: 1994, 'The Use of Radium Isotopic Ratio in Groundwater as a Tool for Pollution Source Identification', J. Radional. Nucl. Chem. 182, 11–19.

    Google Scholar 

  • Genereux, D. P., Hemond, H. P. and Mulholland, P. J.: 1993, 'Use of Random-222 and Calcium as Tracers in a Three-end-member Mixing Model for Streamflow Generation on the West Fork of Walker Branch Watershed', J. Hydrol. 142, 167–211.

    Google Scholar 

  • Gonfiantini, R., Gallo, G., Payne, B. R. and Taylor, C. B. and Taylor, C. B.: 1976, 'Environmental Isotopes and Hydrochemistry in Ground Water of Gran Canaria', in: Interpretation of Environmental Isotope and Hydrochemical Data in Ground Water Hydrology, International Atomic Energy Agency, Vienna, pp. 159–170.

    Google Scholar 

  • Goode, D. J. and Konikow: 1989, 'Modification of a Method-of-Characteristics Solute-transport Model to Incorporate Decay and Equilibrium-Controlled Sorption or Ion Exchange', U.S.G.S. WRI-Rept. 89–4030, 65 pp.

  • Goode, D. J.: 1996, 'Direct Simulation of Groundwater Age', Water Resour. Res. 32, 289–296.

    Google Scholar 

  • Grabczak, J., Maloszewski, P., Rozaanski, K. and Zuber, A.: 1984, 'Estimation of the Tritium Input Function With the Aid of Stable Isotopes', Catena, 11, 105–114.

    Google Scholar 

  • Gupta, S. K., Lal, D. and Sharma, P.: 1981, 'An Approach to Determining Pathways and Residence Time of Groundwater: Dual Radiotracer Dating', J. Geophys. Res. 86, 5292–5300.

    Google Scholar 

  • Guymon, G. L.: 1972, 'Note on Finite Element Solution of Diffusion-Continuity Equation', Water Resour. Res. 8, 1357–1360.

    Google Scholar 

  • Hackley, K. C., Liu, C. L. and Coleman, D. D.: 1996, 'Environmental Isotope Characteristics of Landfill Leachates and Gases', Ground Water, 34, 827–836.

    Google Scholar 

  • Haitjema, H. M.: 1995, 'On the Residence Time Distribution in Idealized Groundwatersheds', J. Hydrol. 172, 130–146.

    Google Scholar 

  • Harris, D. M., McDonnel, J. J. and Rodhe, A.: 1995, 'Hydrograph Separation Using Continuous Open System Isotope Mixing', Water Resour. Res. 31, 157–171.

    Google Scholar 

  • Hewlett, J. D. and Hibbert, A. R.: 1967, 'Factors Affecting the Response of Small Watersheds to Precipitation in Humid Areas', in: Sopper, W. E. and Hull, H. W. (eds.), Forest Hydrology, Proceedings of the International Symposium on Forest Hydrology, Pergamon Press, New York, pp. 275–290.

    Google Scholar 

  • Horsley, S. W.: 1995, 'Protecting Ground Water By Managing Storm Water', Ground Water Mon. Remed. Summer, 82–84.

  • Horton, R. E.: 1933, 'The Role of Infiltration in the Hydrologic Cycle', Trans. Geophys. Union 14, 446–460.

    Google Scholar 

  • Hursh, C. R. and Brater, E. F.: 1941, 'Separating Storm hydrographs into Surface and Subsurface Flow', Trans. Am. Geophys. Union. 22, 863–871.

    Google Scholar 

  • IAEA: 1983, Guidebook on Nuclear Techniques in Hydrology. Intern. Atomic, Energy Agency. Tech. Rept. Ser. 91, 437 pp.

  • Ivanovich, M. and Harmon, R. S.: 1992, Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, Oxford Science Publ., 910 pp.

  • Jayatilaka, C. J. and Gillham, C. J.: 1996, 'A Deterministic-Empirical Model of the Effect of the Capillary Fringe on Near-Stream Area Runoff 1. Description of the Model', J. Hydrol. 184, 299–315.

    Google Scholar 

  • Jayatilaka, C. J. and Gillham, R. W., Blowes, D. W. and Nathan, R. J.: 1996, 'A Deterministic-Empirical Model of the Effect of the Capillary Fringe on Near-Stream Area Runoff 2. Testing and Application', J. Hydrol. 184, 317–336.

    Google Scholar 

  • Kendall, C. and McDonnell, J. J.: 1993, 'Effect of Intrastorm Heterogeneiites of Rainfall, Soil Water and Groundwater on Runoff Modeling', in: Peters, N. E. (eds.), Tracers in Hydrology, International Assoc. of Hydrol. Sci. Publ., No. 215, July 11–23, 1993, Yokohama, Japan, pp. 41–49.

  • Kendall, C. and McDonnell, J. J., Sklash, M. G. and Bullen, T. D.: 1995, 'Isotope Tracers of Water and Solute Sources in Catchments', in: Trudgill, S. T. Solute Modeling in Catchment Systems, John Wiley & Sons Ltd, Toronto, pp. 261–303.

    Google Scholar 

  • Kennedy, V. C., Kendall, C., Zelleger, G. W., Wyerman, T. A. and Avanzino, R. J.: 1986, 'Determination of the Components of Stormflow Using Water Chemistry and Environmental Isotopes, Mattole River Basin, California', J. Hydrol. 84, 107–140.

    Google Scholar 

  • Komor, S. C. and Magner: 1996, 'Nitrate in Groundwater and Water Sources Used by Riparian Trees in an Agricultural Watershed: A Chemical and Isotopic Investigation in Southern Minnesota', Water Resour. Res. 32, 1039–1050.

    Google Scholar 

  • Krabbenhoft, D. P., Bowser, C. J., Anderson, N. P. and Valley, J.W.: 1990, 'Estimating Groundwater Exchange With Lakes: 1. The Stable Isotope Mass balance Method', Water Resour. Res. 26, 2445–2453.

    Google Scholar 

  • Krabbenhoft, D. P., Bowser, C. J., Anderson, M. P. and Valley, J.W.: 1990a, 'Estimating Groundwater Exchange with Lakes: 1. The Stable Isotope Mass BalanceMethod', Water Resour. Res. 26, 2445–2453.

    Google Scholar 

  • Krabbenhoft, D. P., Anderson, M. P. and Bowser, C. J.: 1990b, 'Estimating Groundwater Exchange with Lakes: 2. Calibration of a Three-Dimensional, Solute Transport Model to a Stable Isotope Plume', Water Resour. Res. 26, 2455–2462.

    Google Scholar 

  • Kreft, A. and Zuber, A.: 1978, 'On the Physical Meaning of the Dispersion Equation and its Solutions for Different Intial and Boundary Conditions', Chem. Eng. Sci. 33, 1471–1480.

    Google Scholar 

  • Krothe, N. C. and Libra, R.D.: 1983, 'Sulfur Isotopes and Hydrochemical Variations in Spring Waters of Southern Indiana, USA' 61, 267–283.

    Google Scholar 

  • Kyser, T.: 1987, Stable Isotope Geochemistry of Low Temperature Process. Mineral. Soc. Canada, Short Course Handbook, v. 13.

  • Lajtha, K. and Michener, R. H.: 1994, Stable Isotopes in Ecology and Environmental Sciences, Blackwell Scientific, 316 pp.

  • Larson, G. J., Delcore, M. R. and Offer, S.: 1987, 'Application of the Tritium Interface Method for Determining Recharge Rates to Unconfinfined Aquifers, I. Homogenous Casen', J. Hydrol. 91, 59–72.

    Google Scholar 

  • Lehmann, B. E., Loosli, H. H., Rauber, D., Thonnard, N. and Willis, R. D.: 1991, 81Kr and 85Kr in Groundwater, Milk River Aquifer, Alberta, Canada', Appl. Geochem. 6, 419–423.

    Google Scholar 

  • Lindstrom, G. and Rodhe, A.: 1992, 'Transit Times of Water in Soil Lysimeters From Modeling of Oxygen-18', Water, Air and Soil Pollut. 65, 83–100.

    Google Scholar 

  • Loosli, H. H., Lehmann, B. E. and Balderer, W.: 1989, 'Argon-39, Argon-37 and Krypton-85 Isotopes in Stripa Groundwaters', Geochim. Cosmochim. Acta 53, 1826–1829.

    Google Scholar 

  • Maloszewski, P. and Zuber, A.: 1982, 'Determining the Turnover Time of Groundwater Systems With the Aid of Environmental Tracers: 1. Models and their Applicability', J. Hydrol. 57, 207–231.

    Google Scholar 

  • Martin, J. F., Davis, S. N. and Elmore, D.: 1987, 'Applications of 129I and 36Cl in Hydrology', Nucl. Instr. Meth. Phys. Res. B29, 361–371.

    Google Scholar 

  • Mazor, E.: 1991, Applied Chemical and Isotopic Groundwater Hydrology, Halsted Press, 274 pp.

  • Mosley, M. P.: 1979, 'Streamflow Generation in a Forested Watershed, New Zealand', Water Resour. Res. 15, 795–06.

    Google Scholar 

  • McCarthy, K. A., McFarland, W. D., Wilkinson, J, M. and White. L. D.: 1992, 'The Dynamic Relationship Between Ground Water and the Columbia River: Using Deuterium and Oxygen18 as Tracers', J. Hydrol. 135, 1–12.

    Google Scholar 

  • Muir, K. S. and Coplen, T. B.: 1981, 'Tracing Ground-Water Movement by Using the Stable Isotopes of Oxygen and Hydrogen, Upper Penitencia Creek Alluvial Fan, Santa Clara Valley, California', U.S. Geological Survey Water Supply Paper 2075.

  • Nauman, E. B.: 1981, 'Residence Times Distributions in Systems Governed by the Dispersion Equation', Chem. Eng. Sci. 36, 957–966.

    Google Scholar 

  • Payne, B. R.: 1981, 'Practical Applications of Stable Isotopes to Hydrological Problems', in: Gat, J. R. and Gonfiantini, R. (eds.), Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, International Atomic Energy Agency, Vienna, pp. 303–334.

    Google Scholar 

  • Payne, B. R.: 1983, 'Ground Water Salinisation', in: Guidebook on Nuclear Techniques in Hydrology, International Atomic Energy Agency, Vienna, pp. 351–357.

    Google Scholar 

  • Pearce, A. J., Stewart, M. K. and Sklash, M. G.: 1986, 'Storm Runoff Generation in Humid Headwater Catchments: 1. Where Does the Water Come From?', Water Resour. Res. 22, 1282–1272.

    Google Scholar 

  • Perry, E. C. and Montgomery, C.W.: 1982, Isotope Studies of Hydrologic Processes. Northern Illinois University Press, 118 pp.

  • Phillips, F. M.: 1996, 'The Use of Isotopes and Environmental Tracers in Subsurface Hydrology', Rev. Geophys. Internet: earth.agu.org/revgeophys/phillf01. 16 pp.

  • Pitt, R., Clark, S., Parmer, K. and Field, R.: 1996, Groundwater Contamination From Stormwater Infiltration. Ann Arbor Press, 219 pp.

  • Plummer, L. N., Bushy, J. F., Lee, R. W. and Hanshaw, B. B.: 1990, 'Geochemical Modeling of the Madison Aquifer in Parts of Montana, Wyoming, and South Dakota', Water Resour. Res. 26, 1981–2014.

    Google Scholar 

  • Plummer, L. N., Michel, R. L., Thurman, E. M. and Glynn, P. D.: 1993, 'Environmental Tracers for Age Dating Young Ground Water', in: Alley, W. M. (ed.), Regional Water Quality. Van Nostrand Reinhold, pp. 255–294.

  • Robertson, W. D. and Cherry, J. A.: 1989, 'Tritium as an Indicator of Recharge and Dispersion in a Groundwater System in Central Ontario', Water Resour. Res. 25, 1097–1109.

    Google Scholar 

  • Sanford, W. E., Shropshire, R. G. and Solomon, D. K.: 1996, 'Dissolved Gas Tracers in groundwater: Simplified Injection, Sampling, and Analysis', Water Resour. Res. 32, 1635–1642.

    Google Scholar 

  • Sidle, W. C.: 1995, 'Diagnosis of Ground Water–Surface Water Interactions and Their Impact on Drinking Water Supplies from the Analyses of Oxygen-18, Deuterium, and Tritium Isotopic Processes', USDOE/EM Technical Memorandum Report: No. 11–27, 25 pp.

  • Sidle, W. C. and Lee, P. Y.: 1996, 'Uranium Contamination in the Great Miami Aquifer at the Fernald Environmental Management Project, Fernald, Ohio', Ground Water, 34, 876–882.

    Google Scholar 

  • Simpkins, W. W. and Bradbury, K. R.: 1992, 'Groundwater Flow, Velocity, and Age in a Thick Fine-Grained Till Unit in Southeastern Wisconsin', J. Hydrol. 132, 283–319.

    Google Scholar 

  • Sklash, M. G. and Farvolden, R. N.: 1979, 'The Role of Groundwater In Storm Runoff', J. Hydrol. 43, 45–65.

    Google Scholar 

  • Sklash, M.G., Stewart, M. K. and Pearce, A. J.: 1986, 'Storm Runoff Generation in Humid Headwater Catchments: 2. A Case Study of Hillslope and Low-order Stream Response', Water Resour. Res. 22, 1273–1282.

    Google Scholar 

  • Solomon, D. K., Poreda, R. J., Cook, P. G. and Hunt, A.: 1995, 'Site Characterization Using 3H/3He Ground-Water Ages, Cape Cod, MA', Ground Water 33, 988–996.

    Google Scholar 

  • Stam, A. C., Mittchell, M. J., Krouse, H. R. and Kahl, J. S.: 1992, 'Stable Sulfur Isotopes of Sulfate in Precipitation and Stream Solutions in a Northern Hardwood Watershed', Water Resour. Res. 28, 231–236.

    Google Scholar 

  • Stewart, M. K. and McDonnell, J. J.: 1991, 'Modeling Base Flow Soil Waters Residence Times From Deuterium Concentrations', Water. Resour. Res. 27, 2681–2693.

    Google Scholar 

  • Stichler, W., Maloszewski, P. and Moser, H.: 1986, 'Modelling of River Water Infiltration Using Oxygen-18 Data', J. Hydrol. 83, 355–365.

    Google Scholar 

  • Taylor, R. E., Long, A. and Kra, R. S.: 1992, Radiocarbon After Four Decades. Springer-Verlag, 596 pp.

  • Trudgill, S. T.: 1995, Solute Modelling in Catchment Systems, John Wiley & Sons Ltd, Toronto, 473 pp.

    Google Scholar 

  • Unnikrishna, P. V., McDonnell, J. J. and Stewart, M. K.: 1995, 'Soil Water Isotopic Residence Time Modelling', in: Trudgill, S. T. (ed.), Solute Modeling in Catchment Systems, John Wiley & Sons Ltd, Toronto, pp. 237–260.

    Google Scholar 

  • USEPA: 1996, Ground Water and Wellhead in the 1996 Amendments to the Safe Drinking Water Act. United States Environmental protection Agency, 33 pp.

  • Vogt, S., Elmore, D. and Fritz. S. J.: 1994, 36Cl in Shallow, Perched Aquifers From Central Indiana. Nucl. Instr. Meth. Phys. Res. B92, 398–403.

    Google Scholar 

  • Von Blanckenburg, F., Belshaw, N. S., O'Nions, R.K.: 1996, 'Separation of 9Be and Cosmogenic 10Be from Environmental Materials and SIMS Isotopic Dilution Analysis', Chem. Geol. 129, 93–99y.

    Google Scholar 

  • Voss, C. I.: 1984, Saturated-Unsaturated Transport: A Finite-Element Simulation Model for Saturated-Unsaturated, Fluid-Density-Dependent Ground Water Flow with Energy Transport or Chemically Reactive Single-Species Solute Transport. U.S.G.S.

  • Walker, F. W., Parrington, J. R. and Feiner, F.: 1989, Nuclides and Isotopes, 14th ed., 57 pp.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidle, W.C. Environmental Isotopes for Resolution of Hydrology Problems. Environ Monit Assess 52, 389–410 (1998). https://doi.org/10.1023/A:1005922029958

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005922029958

Navigation