Skip to main content
Log in

Surface Tension Measurements of Liquid Metals by the Quasi-Containerless Pendant Drop Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The surface tensions of liquid metals, Zr, Ni, Ti, Mo, and Nb, have been measured at their melting points using the quasi-containerless pendant drop method. This method involves melting the end of a high-purity metal rod by bombardment with an electron beam to form a pendant drop under ultrahigh-vacuum conditions to minimize surface contamination. The magnified image of the drop is captured from a high-resolution CCD camera and digitized using a frame-grabber. The digital image is analyzed by reading the pixel intensities from a graphics file. The edge coordinates of the drop along rows and columns of pixels are searched by a computer program and stored in an array. An optimized theoretical drop shape is computed from the edge coordinates by solving the Young–Laplace differential equation to deduce the surface tension. The measured surface tensions are compared with available experimental results and theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. J. Keene, Int. Mater. Rev. 38:157 (1993).

    Google Scholar 

  2. B. C. Allen, Trans. AIME 227:1175 (1963); B. C. Allen, Liquid Metals, Chemistry and Physics, S. Z. Beer, ed. (Marcel Dekker, New York, 1972), pp. 161-212.

    Google Scholar 

  3. K. Nogi, K. Ogino, A. McLean, and W. A. Miller, Metallurg. Trans. B 17:163 (1986).

    Google Scholar 

  4. T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1988), pp. 109-146.

    Google Scholar 

  5. S. Sauerland, G. Lohofer, and I. Egry, J. Non-Cryst. Solids (Part 2) 156:833 (1993).

    Google Scholar 

  6. B. J. Keene, K. C. Mills, A. Kasama, A. McLean, and W. A. Miller, Metallurg. Trans. B 17:159 (1986).

    Google Scholar 

  7. S. C. Hardy, J. Cryst. Growth 69:456 (1984); S. C. Hardy, J. Cryst. Growth 71:602 (1985).

    Google Scholar 

  8. W. D. Kingery and M. Humenik, J. Phys. Chem. 57:359 (1953).

    Google Scholar 

  9. E. Ricci, L. Nanni, E. Arato, and P. Costa, J. Mater. Sci. 33:305 (1998).

    Google Scholar 

  10. S. Subramaniam, D. R. White, D. J. Scholl, and W. H. Weber, J. Phys. D Appl. Phys. 31:1963 (1998).

    Google Scholar 

  11. H. A. Friedrichs, L. W. Ronkow, and Y. M. Zhou, Steel Res. 68:209 (1997).

    Google Scholar 

  12. Y. Bayazitoglu, U. B. R. Sathuvalli, P. V. R. Suryanarayana, and G. F. Mitchell, Phys. Fluids 8:370 (1996).

    Google Scholar 

  13. J. Szekely, E. Schwartz, and R. Hyers, J. Mater. J. Min. Met. Mater. Soc. 47:50 (1995).

    Google Scholar 

  14. D. B. Thiessen and K. F. Man, The Measurement, Instrumentation, and Sensor Handbook, J. G. Webster, ed. (CRC Press and IEEE Press, Boca Raton, FL, 1999), pp. 1-13.

    Google Scholar 

  15. D. B. Thiessen and K. F. Man, Mechanical Variable Measurement, Solid, Fluid, and Thermal, J. G. Webster, ed. (CRC Press, Boca Raton, FL, 2000), pp. 1-13.

    Google Scholar 

  16. I. Egry, J. Mater. Sci. 26:2997 (1991).

    Google Scholar 

  17. D. B. Thiessen and K. F. Man, Int. J. Thermophys. 16:245 (1995).

    Google Scholar 

  18. D. B. Thiessen, D. J. Chione, C. B. McCreary, and W. B. Krantz, J. Colloid Interface Sci. 177:658 (1996).

    Google Scholar 

  19. P. Walker and W. Tarn, Handbook of Metals Etchants (CRC, Boca Raton, FL, 1991), p. 821.

    Google Scholar 

  20. E. A. Brandes (ed.), Smithells Metals Reference Book (Butterworths, London, 1983), pp. 10-49.

    Google Scholar 

  21. J. C. Kelly, J. Sci. Instrum. 36:89 (1959).

    Google Scholar 

  22. B. Vinet, J. P. Garandet, and L. Cortella, J. Appl. Phys. 73:3830 (1993).

    Google Scholar 

  23. M. E. Fraser, W.-K. Lu, A. E. Hamielec, and R. Murarka, Metall. Trans. 2:817 (1971).

    Google Scholar 

  24. S. Sauerland, K. Eckler, and I. Egry, J. Mater. Sci. Lett. 11:330 (1992).

    Google Scholar 

  25. P. Namba and N. Isobe, Sci. Pap. Inst. Phys. Chem. Res. (Tokyo) 57:5154 (1963).

    Google Scholar 

  26. A. W. Peterson, H. Kedesdy, P. H. Keck, and E. Schwartz, J. Appl. Phys. 29:213 (1958).

    Google Scholar 

  27. J. Flint, J. Nucl. Mater. 16:260 (1965).

    Google Scholar 

  28. R. C. Weast (ed.), Handbook of Chemistry and Physics, 69th ed. (CRC Press, Boca Raton, FL, 1988-1989), pp. B215-B220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man, K.F. Surface Tension Measurements of Liquid Metals by the Quasi-Containerless Pendant Drop Method. International Journal of Thermophysics 21, 793–804 (2000). https://doi.org/10.1023/A:1006601821432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006601821432

Navigation