Skip to main content
Log in

Vapour Transport in Low Permeability Unsaturated Soils with Capillary Effects

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A discussion of water phase change in unsaturated soils that develop capillary effects is first carried out in the paper. A distinction between the GR (geothermal reservoir) and the NUS (nonisothermal unsaturated soil) approaches is performed. Several aspects concerning advective and nonadvective fluxes of vapour are described secondly and some relationships concerning the case of mass motion in a closed system subjected to temperature gradients derived. Since the structure of unsaturated clays changes with moisture content, in order to correctly simulate the coupled phenomena induced by temperature gradients a model for intrinsic permeability as a function of humidity is required. A preliminary version of the model is presented and applied to interpret a laboratory test by means of a numerical simulation using CODE_BRIGHT

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso, E. E., Lloret, A., Gens, A. and Yang, D. Q.: 1995, Experimental behaviour of highly expansive double structure clay, In: Proc. 1st Int. Conf. On Unsaturated Soils, Paris, Vol. 1, pp. 11–16.

    Google Scholar 

  • Alonso, E. E. and Gens, A.: 1999, Modelling Expansive Geomaterials, In: R. C. Picu and E. Krempl (eds), 4th Int. Conf. on Constitutive Laws for Engineering Materials, Troy (New York).

  • Bear J.: 1972: Dynamics of Fluids in Porous Media, American Elsevier Publishing Company.

  • Bear, J. and Bachmat, Y.: 1986, Macroscopic modelling of transport phenomena in porous media. 2. Applications to mass, momentum and energy transport, Transport in Porous Media 1, 241–269.

    Google Scholar 

  • Bear, J. and Gilman, A.: 1995, Migration of salts in the unsaturated zone caused by heating, Transport in Porous Media 19, 139–156.

    Google Scholar 

  • Bird, R. B., Stewart, W. E. and Lightfoot, E. N.: (1960): Transport Phenomena, John Wiley, New York, 1960.

    Google Scholar 

  • Edlefson, N. E. and Anderson, A. B. C.: 1943, Thermodynamics of soil moisture, Hilgardia 15(2), 31–298.

    Google Scholar 

  • Falta, R. W., Pruess, K., Javandel, I. and Witherspoon, P. A.: 1992, Numerical modelling of steam injection for the removal of nonaqueus phase liquids from the subsurface. 1. Numerical formulation, Water Resour. Res. 28(2), 433–449.

    Google Scholar 

  • Faust, C. R. and Mercer, J. W.: 1979, Geothermal reservoir simulation: 1. Mathematical models for liquid-and vapour-dominated hydrothermal systems, Water Resour. Res. 15(1), 23–30.

    Google Scholar 

  • Gens, A., Garcia-Molina, A. J., Olivella, S., Alonso, E. E., Huertas, F.: 1998, Analysis of full scale in-situ heating test simulating repository conditions, Int. J. Num. Anal. Meth. Geomech. 22, 515–548.

    Google Scholar 

  • Milly, P. C. D.: 1982, Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model, Water Resour. Res. 18(3), 489–498.

    Google Scholar 

  • Olivella, S., Carrera, J., Gens, A., Alonso, E. E.: 1994, Non-isothermal multiphase flow of brine and gas through saline media, Transport in Porous Media 15, 271–293.

    Google Scholar 

  • Olivella, S., Carrera, J., Gens, A., Alonso, E. E.: 1996a, Porosity variations in saline media caused by temperature gradients coupled to multiphase flow and dissolution/precipitation, Transport in Porous Media 25, 1–25.

    Google Scholar 

  • Olivella, S., Gens, A., Carrera, J., Alonso E. E.: 1996b, Numerical formulation for a simulator (CODE BRIGHT) for the coupled analysis of saline media, Engng Comput. 13(7), 87–112.

    Google Scholar 

  • Philip, J. R. and de Vries, D. A.: 1957, Moisture movement in porous materials under temperature gradients, EOS Trans. AGU 38(2), 222–232.

    Google Scholar 

  • Pollock, D. W.: 1986, Simulation of fluid flow and energy transport processes associated with highlevel radioactive waste disposal in unsaturated alluvium, Water Resour. Res. 22(5), 765–775.

    Google Scholar 

  • Pruess, K.: 1987, TOUGH User's Guide, Lawrence Berkeley Laboratory.

  • Roberts, P. J., Lewis, R. W., Carradori, G. and Peano, A.: 1987, An extension of the thermodynamic domain of a geothermal reservoir simulator, Transport in Porous Media 2, 397–420.

    Google Scholar 

  • van Genuchten, R.: 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 892–898.

  • Villar, M. V.: 1994, Modelling and validation of the thermo-hydraulic-mechanical and geochemical behaviour of the clay barrier, Final report 1991-1994, CIEMAT, Madrid.

    Google Scholar 

  • Villar, M. V., Fernandez, A. M. and Cuevas, J.: 1997, Full scale engineered barriers experiment in crystalline host rock, Caracterización Geoquímica de bentonita compactada: efectos producidos por flujo termohidráulico, Informe 70-IMA-M–0-2, Ciemat, Enresa.

    Google Scholar 

  • Villar, M. V.: 1998, Ensayos para el proyecto FEBEX, CIEMAT-report 70-IMA-L–5-51, prepared for ENRESA.

  • Volkaert, G, Ortiz, L., De Cannière, P., Put, M., Horseman, S. T., Harrington, J. F., Fioravante, V. and Impey, M.: 1994, Modelling and experiments on gas migration in repository host rocks, MEGAS Project, Final Report, Phase 1.

  • Wa'il Abu-El-Sha'r and Abriola, L. M.: 1997, Experimental assessment of gas transport mechanisms in natural porous media. Parameter estimation, Water Resour. Res. 33(4), 505–516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivella, S., Gens, A. Vapour Transport in Low Permeability Unsaturated Soils with Capillary Effects. Transport in Porous Media 40, 219–241 (2000). https://doi.org/10.1023/A:1006749505937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006749505937

Keywords

Navigation