Skip to main content
Log in

Geophysics For Slope Stability

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

A pre-requisite in slope stability analyses is that the internal structure and the mechanical properties of the soil or rock mass of the slope, are known or can be estimated with a reasonable degree of certainty. Geophysical methods to determine the internal structure of a soil or rock mass may be used for this purpose. Various geophysical methods and their merits for slope stability analyses are discussed. Seismic methods are often the most suitable because the measurements depend on the mechanical properties that are also important in the mechanical calculation of slope stability analyses. Other geophysical methods, such as electromagnetic, electric resistivity, self-potential, and gravity methods, may be useful to determine the internal structure, but require a correlation of found boundaries with mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anon.: 1995, Geophysical Exploration for Engineering and Environmental Investigations, USArmy Corps of Engineers, USACE Publication Depot, attn: CEIM-IM-PD 2803 52nd Ave. Hyattsville, MD 20781-1102, USA.

  • Bogoslovsky, V.A. and Ogilvy, A.A.: 1977, ‘Application of geophysical methods for the investigation of landslides’, Geophysics 42, 562–571.

    Google Scholar 

  • Bruno, F., Levato, L. and Marillier, F.: 1998, ‘High-resolution seismic reflection, EMand electrokinetic SP applied to landslide studies: “Le Boup” landslide (western Swiss Alps)’, Proc. IVMeeting of the Environmental and Engineering Geophysical Society (European Section), Barcelona, pp. 571–574.

  • Dahlin, T. and Bernstone, C.: 1997, ‘A roll-along technique for 3D resistivity data acquisition with multi-electrode arrays’, Proc. Symposium on the Application of Geophysics to Engineering and Environmental Problems, Vol. 2, Reno, Nevada, pp. 927–935.

    Google Scholar 

  • Deere, D.U., Hendron, A.J., Patton, F.D. and Cording, E.J.: 1967, ‘Design of surface and near surface constructions in rock’, Proc. 8th U.S. Symp. Rock Mechanics, Minnesota edn, Fairhurst Publishers, AIME, New York. pp. 237–302.

    Google Scholar 

  • Edwards, L.S.: 1977, ‘A modified pseudosection for resistivity and induced-polarization’, Geophys. 42, 1020–1036.

    Google Scholar 

  • Ghose, R., Brouwer, J. and Nijhof, V.: 1996, A portable S-wave vibrator for high-resolution imaging of the shallow Subsurface, Exp. abstr. of the 58th EAGE Conference, M037.

  • Ghose, R., Nijhof, V., Brouwer, J., Matsubara, Y., Kaida, Y. and Takahashi, T.: 1998, ‘Shallow to very shallow, high-resolution reflection seismic using a portable vibrator system’, Geophys. 63(4), 1295–1309.

    Google Scholar 

  • Graaf, L.W. de and Rupke, J.: 1999, Analyse der Felssturzbedrohung am Breiten Berg, Austria, Alpine Geomorphology Research Group, University Amsterdam, Netherlands.

    Google Scholar 

  • Graaf, L.W. de, Seijmonsbergen, H.C., Biewinga, D., Busnach, T. and Rupke, J.: 2000, Erdwissenschaftlische Untersuchungen im Schluchter (Malbun, Liechtenstein), Alpine Geomorphology Research Group, University Amsterdam, Netherlands.

    Google Scholar 

  • Griffiths, D.H. and Turnbull, J.: 1985, ‘A multi-electrode array for resistivity surveying’, First Break 3(7), 16–20.

    Google Scholar 

  • Griffiths, D.H., Turnbull, J. and Olayinka, A.I.: 1990, ‘Two-dimensional resistivity mapping with a computer controlled array’, First Break 121–129.

  • Hack, H.R.G.K. and Price, D.G.: 1990, ‘A refraction seismic study to determine joint properties in rock-masses’, 6th Congress IAEG, Amsterdam, Balkema, Rotterdam, pp. 935–941.

    Google Scholar 

  • Helbig, K. and Mesdag, C.S.: 1982, ‘The potential of shear-wave observations’, Den Haag, Geophysical Prospecting 30(4), 413–431.

    Google Scholar 

  • Kurahashi, T., Watanabe, S., Ohtani, T. and Inazaki, T.: 1998, ‘Fracture imaging behind a rock surface for the slope stability assessment’, 4th SEGJ International Symposium Fracture Imaging, Tokyo, Japan.

  • Li, Y. and Oldenburg, D.W.: 1992, ‘Approximate inverse mapping in DC resistivity problems’, Geophysical Journal International 109, 343–362.

    Google Scholar 

  • Loke, M.H. and Barker, R.D.: 1996, ‘Practical techniques for 3D resistivity surveys and data inversion’, Geophysical Prospecting 44, 499–523.

    Google Scholar 

  • Luijk, E.J.: 1998, ‘Discontinuity stiffness determination from normal incidence in-situ seismic transmission measurements’, CTG report/M.Sc. thesis. Centre for Technical Geosciences, Delft, The Netherlands.

    Google Scholar 

  • Merkler, G., Toma, V. and Victor, M.: 1970, ‘Geophysikalische Messungen, angewandt zur Ermittlung einiger Material-kenwerte des Gebirges. Ergebnisse und Problematik dieser Messungen’, 2nd Congress of the Int. Society for Rock Mechanics, Belgrade.

  • Nettleton, L.L.: 1939, ‘Determination of density for reduction of gravimeter observations’, Geophys. 4, 176–183.

    Google Scholar 

  • Parasnis, D.S.: 1962, Principles of Applied Geophysics, Methuen, London.

    Google Scholar 

  • Peeters, M., Drijkoningen, G.G., Donselaar, M.E. and Kempen, M.H. van: 1998, ‘Huesca “high resolution subsurface imaging and rock characterization” Project’, Society of Exploration Geophysics, Annual Meeting, New Orleans.

  • Pyrak-Nolte, L.J. and Shiau, J.-Y.: 1998, ‘Imaging seismic wave propagation in fractured media’, 4th SEGJ International Symposium, Fracture Imaging, Tokyo, Japan.

  • Sandmeier, K.J.: 2000, Refra, Computer Program for Refraction Seismic Interpretation, Zipser Str.1, 76227 Karlsruhe, Germany.

  • Stötzner, U.: 1974, Ingenieurgeophysikalische Untersuchungen zur Erkundung und Uberwachung von Rutschungen und Felsstürzen, Vol. 2, No. 3, Zeitschrift für geologische Wissenschaften, Berlin, pp. 325–331.

    Google Scholar 

  • Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A.: 1990, Applied Geophysics, Cambridge University Press, Cambridge, 770 pp.

    Google Scholar 

  • Tomo, V.: 2000, Computer Program for Refraction Seismic Interpretation, Geotomo LLC, 3354 Rogerdale Road, Suite 9111, Houston, Texas 77042, USA.

  • Vogelsang, D.: 1994, Environmental Geophysics, Springer, Berlin, 173 pp.

    Google Scholar 

  • Ward, S.H. (ed.): 1990, Geotechnical and Environmental Geophysics, Vol. 1, Society of Exploration Geophysicists, Tulsa, Oklahoma, 389 pp.

    Google Scholar 

  • Williams, R.A. and Pratt, T.L.: 1996, ‘Detection of the base of Slumgullion landslide, Colorado, by seismic reflection and refraction methods’, in D.J. Varnes and W.Z. Savage (eds), The Slumgullion Earth Flow: A Large-Scale Natural Laboratory, U.S. Geological Survey Bulletin 2130, United States Government Printing Office, Washington.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hack, R. Geophysics For Slope Stability. Surveys in Geophysics 21, 423–448 (2000). https://doi.org/10.1023/A:1006797126800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006797126800

Navigation