Skip to main content
Log in

Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part I: Critical event

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The critical event of cleavage is variable for different types of specimens made of the same steel. In notched specimens (Charpy V or 4 PB) over a wide temperature range as low as -196°C, the critical event is the propagation of a ferrite grain-sized crack (30-40µm). In precracked specimens at a moderately low temperature (around -110°C) it is the propagation of a second phase particle-sized crack (< 10µm). At ever lower temperatures (-150°C - -196°C) the cleavage fracture is nucleation-controlled.

No matter whether a notched specimen or a precracked specimen is used, as long as a fibrous crack has been initiated and propagated in it, the critical event is the propagation of a ferrite grain-sized crack and the fracture behavior can be handled as in a specimen with an acute notch.

The difference of ‘σ\(f\)’values measured in a notched specimen and a precracked specimen is caused by a change of the critical event in these two specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Smith, International Journal of Fracture Mechanics 14 (1968) 131–146.

    Google Scholar 

  2. A.N. Stroh, Proceedings, Royal Society A233 (1954) 400.

    Google Scholar 

  3. J.F. Knott, Journal of the Iron and Steel Institute (1966) 104–111.

  4. J.A. Hendrickson et al., Transactions ASM 50 (1958) 656–676.

    Google Scholar 

  5. G.T. Hahn et al., Proceedings, Swampscott Conference on Fracture, Wiley, New York (1959) 91–93.

    Google Scholar 

  6. A.H. Cottrell, Proceedings, Swampscott Conference on Fracture, Wiley, New York (1959) 20–53.

    Google Scholar 

  7. N.J. Petch, Proceedings, Swampscott Conference on Fracture, Wiley, New York (1959) 54–90.

    Google Scholar 

  8. C.J. McMahon and M. Cohen, Acta Metallurgica 13 (1965) 591–605.

    Article  Google Scholar 

  9. E. Smith, Proceedings, Conference on the Physical Basis of Yield and Fracture, Physics Society, Oxford (1966) 36.

    Google Scholar 

  10. D.A. Curry and J.F. Knott, Metals Science Journal 12 (1978) 511–514.

    Article  Google Scholar 

  11. G.T. Hahn, Metallurgical Transactions 15A (1984) 947–959.

    Google Scholar 

  12. R.O. Ritchie, J.F. Knott and J.R. Rice, Journal of the Mechanics and Physics of Solids 21 (1973) 395–410.

    Article  Google Scholar 

  13. D. Curry and J.F. Knott, Metals Science Journal 13 (1979) 341–345.

    Google Scholar 

  14. Chun-Xiao Hou, Qi-Gong Cai, Yi Su and Xiu-Yuan Zheng, Proceedings ICF 6, 2 (1985) 1412–1422.

    Google Scholar 

  15. Tsann Lin, A.G. Evans and R.O. Ritchie, Journal of the Mechanics and Physics of Solids 34 (1986) 477–497.

    Article  Google Scholar 

  16. G. Oates and J.R. Griffiths, Metals Science Journal 3 (1969) 111–115.

    Google Scholar 

  17. Tsan Lin, A.G. Evans and R.O. Ritchie, Metallurgical Transactions 18A (1987) 641–651.

    Google Scholar 

  18. J.H. Chen and C. Yan, Materials Science and Technology 4 (1988) 732–739.

    Google Scholar 

  19. J.H. Chen, G.Z. Wang and H. Ma, Metallurgical Transactions 21A (1990) 321–330.

    Google Scholar 

  20. J.H. Chen, L. Zhu and H. Ma, Acta Metallurgica et Materialia 38 (1990) 2527–2535.

    Article  Google Scholar 

  21. J.H. Chen, G.Z. Wang, Z. WAng, L. Zhu and Y.Y. Gao, Metallurgical Transactions 22A (1991) 2287–2296.

    Google Scholar 

  22. J.H. Chen and G.Z. Wang, Metallurgical Transactions 23A (1992) 509–517.

    Google Scholar 

  23. J.H. Chen, L. Zhu, G.Z. Wang and Z. Wang, Metallurgical Transactions 24A (1993) 659–667.

    Google Scholar 

  24. J.H. Chen and G.Z. Wang, Metallurgical Transactions 25A (1994) 1381–1390.

    Google Scholar 

  25. J.H. Chen, T.D. Xia and C. Yan, Welding Journal 172 (1993) 19s–27s.

    Google Scholar 

  26. J.H. Chen, G.Z. Wang, C. Yan, H. Ma and L. Zhu, International Journal of Fracture 83 (1997) Pt. III.

  27. A.N. Stroh, Proceedings, Royal Society 223 (1954) 404.

    MATH  MathSciNet  ADS  Google Scholar 

  28. A.W. Thompson and J.F. Knott, Metallurgical Transactions 24A (1993) 523–534.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wang, G., Yan, C. et al. Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part I: Critical event. International Journal of Fracture 83, 105–120 (1997). https://doi.org/10.1023/A:1007306932437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007306932437

Keywords

Navigation