Skip to main content
Log in

Dynamic Fracture of Nominally Brittle Materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Current understanding of dynamic fracture mechanisms and the methods of modeling are reviewed critically. Experimental methods used in dynamic fracture investigations and key experimental observations are reviewed. This is followed by a critical review of the dynamic fracture models. Mechanistic and phenomenological models as well as discrete and continuum models and their ability to reproduce experimental results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Latif, A.I.A., Bradt, R.C. and Tressler, R.E. (1977). Dynamics of fracture mirror boundary formation in glass. International Journal of Fracture 13, 349–359.

    Google Scholar 

  • Abraham, F.F., Brodbeck, D., Rafey, R.A. and Rudge, W.E. (1994). Instability dynamics of fracture: A computer simulation investigation. Physical Review Letters 73, 272.

    Google Scholar 

  • Abraham, F.F., Brodbeck, D., Ridge, W.E. and Xu, X. (1997). A molecular dynamics investigation of rapid fracture mechanics. Journal of the Mechanics and Physics of Solids 45, 1595–1619.

    Google Scholar 

  • Anthony, S.R., Chubb, J.P. and Congleton, J. (1970). The crack branching velocity. Philosophical Magazine 22, 1201–126.

    Google Scholar 

  • Arakawa, K. and Takahashi, K. (1987). Dependence of crack acceleration of the dynamic stress intensity factor in polymers. Experimental Mechanics 27, 195–200.

    Google Scholar 

  • Arakawa, K. and Takahashi, K. (1991). Relationship between fracture parameters and surface roughness of brittle polymers. International Journal of Fracture 48, 103–114.

    Google Scholar 

  • Bowden, F.P., Brunton, J.H., Field, J.E. and Hayes, A.D. (1967). Controlled fracture of brittle solids and interruption of electric current. Nature 216, 38–42.

    Google Scholar 

  • Broberg, K.B. (1984). What happens at fast crack growth? in Fundamentals of Deformation and Fracture (Edited by Bilby et al.), 233–242.

  • Carlsson, J., Dahlberg, L. and Nilsson, F. (1973). Experimental studies of the unstable phase of crack propagation in metals and polymers. Dynamic Crack Propagation (Edited by G.C. Sih), Noordhoff International Publishing, Leyden, 165–181.

    Google Scholar 

  • Congleton, J. and Petch, N.J. (1967). Crack-branching. Philosophical Magazine 16, 749–760.

    Google Scholar 

  • Cotterell, B. (1965). Velocity effects in fracture propagation. Applied Materials Research 4, 227–232.

    Google Scholar 

  • Cotterell, B. (1968). Fracture propagation in organic glasses. International Journal of Fracture Mechanics 4, 209.

    Google Scholar 

  • Curran, D.R., Shockey, D.A. and Seaman, L. (1973). Dynamic fracture criteria for a polycarbonate. Journal of Applied Physics 44, 4025.

    Google Scholar 

  • Dally, J.W. (1979). Dynamic photoelastic studies of fracture. Experimental Mechanics 19, 349–361.

    Google Scholar 

  • Dally, J.W., Fourney, W.L. and Irwin, G.R. (1985). On the uniqueness of the stress intensity factor-crack velocity relationship. International Journal of Fracture 27, 159–168.

    Google Scholar 

  • Dulaney, E.N. and Brace, W.F. (1960). Velocity behavior of a growing crack. Journal of Applied Physics 31, 2233–2236.

    Google Scholar 

  • Field, J.E. (1970). Brittle fracture: its study and application. Contemporary Physics 12, 1–31.

    Google Scholar 

  • Fineberg, J., Gross, S.P., Marder, M. and Swinney, H.L. (1991). Instability in dynamic fracture. Physical Review Letters 67, 457.

    Google Scholar 

  • Fineberg, J., Gross, S.P., Marder, M. and Swinney, H.L. (1992). Instability in the propagation of fast cracks. Physical Review B45, 5146–5154.

    Google Scholar 

  • Freund, L.B. (1990). Dynamic Fracture Mechanics, Cambridge University Press.

  • Gao, H. (1996). A theory of local limiting speed in dynamic fracture. Journal of the Mechanics and Physics of Solids 44, 1453–1474.

    Google Scholar 

  • Hopkinson, J. (1901). Orginal Papers, Cambridge University Press, 310–320.

  • Hull, D. (1997a). Influence of stress intensity and crack speed on fracture surface topography: Mirror to mist transition. Journal of Materials Science 31, 1829–1841.

    Google Scholar 

  • Hull, D. (1977b). Influence of stress intensity and crack speed on fracture surface topography: Mirror to mist to macroscopic bifurcation. Journal of Materials Science 31, 4483–4492.

    Google Scholar 

  • Irwin, G.R., Dally, J.W., Kobayashi, T., Fourney, W.L., Etheridge, M.J. and Rossmanith, H.P. (1979). On the determination of the a -K relationship for birefringent polymers. Experimental Mechanics 19, 121–128.

    Google Scholar 

  • Johnson, E. (1992). Process region changes for rapidly propagating cracks. International Journal of Fracture 55, 47–63.

    Google Scholar 

  • Johnson, J.W. and Holloway, D.G. (1966). On the shape and size of the fracture zones on glass fracture surfaces. Philosophical Magazine 14, 731–743.

    Google Scholar 

  • Kalthoff, J.F. (1985). On the measurement of dynamic fracture toughnesses - a review of recent work. International Journal of Fracture 27, 277–298.

    Google Scholar 

  • Kalthoff, J.F., Beinert, J., Winkler, S. and Klemm, W. (1980). Experimental analysis of dynamic effects in different crack arrest test specimens. ASTM STP 711 - Crack Arrest Methodology and Application, 109–127.

  • Kerkhof, F. (1973). Wave fractographic investigation of brittle fracture dynamics. Dynamic Crack Propagation (Edited by G.C. Sih), Noordhoff International Publishing, Leyden, 3–35.

    Google Scholar 

  • Knauss, W.G. and Ravi-Chandar, K. (1985). Some basic problems in stress wave dominated fracture. International Journal of Fracture 27, 127–143.

    Google Scholar 

  • Kobayashi, A.S. and Mall, S. (1978). Dynamic fracture toughness of Homalite-100. Experimental Mechanics 18, 11–18.

    Google Scholar 

  • Kobayashi, A.S., Wade, B.G. and Bradley, W.B. (1973). Fracture dynamics of Homalite-100. Deformation and Fracture of High Polymers (Edited by H.H. Hausch et al.) Plenum Press, New York, 487–500.

    Google Scholar 

  • Levengood, W.C. (1958). Effect of origin flaw characteristics on glass strength. Journal of Applied Physics 29, 820–826.

    Google Scholar 

  • Ma, C.C. and Freund, L.B. (1986). The extent of the stress intensity factor field during crack growth under dynamic loading conditions. ASME Journal of Applied Mechanics 53, 303–310.

    Google Scholar 

  • Marder, M. and Gross, S.P. (1995). Origin of crack tip instabilities. Journal of the Mechanics and Physics of Solids 43, 1–48.

    Google Scholar 

  • Mecholsky, J.J. (1994). Quantitative fractographic analysis of fracture origins in glass. Fractography of Glass (Edited by R.C. Bradt and R.E. Tressler), Plenum Press, New York, 37–73.

    Google Scholar 

  • Nakano, A., Kalia, R.K. and Vashishta, P. (1995). Dynamics and morphology of brittle cracks: A moleculardynamics study of silicon nitride. Physical Review Letters 75, 3138–3141.

    Google Scholar 

  • Paxson, T.L. and Lucas, R.A. (1973). An investigation of the velocity characteristics of a fixed boundary fracture model. Dynamic Crack Propagation (Edited by G.C. Sih), Noordhoff International Publishing, Leyden, 415–426.

    Google Scholar 

  • Ravi-Chandar, K. and Knauss, W.G. (1982). Dynamic crack tip stresses under stress wave loading - a comparison of theory and experiment. International Journal of Fracture 25, 209–222.

    Google Scholar 

  • Ravi-Chandar, K. and Knauss, W.G. (1984a). An experimental investigation into dynamic fracture - I. Crack initiation and crack arrest. International Journal of Fracture 25, 247–262.

    Google Scholar 

  • Ravi-Chandar, K. and Knauss, W.G. (1984b). An experimental investigation into dynamic fracture - II. Microstructural aspects. International Journal of Fracture 26, 65–80.

    Google Scholar 

  • Ravi-Chandar, K. and Knauss, W.G. (1984c). An experimental investigation into dynamic fracture - III. Steady state crack propagation and crack branching. International Journal of Fracture 26, 141–154.

    Google Scholar 

  • Ravi-Chandar, K. and Knauss, W.G. (1984d). An experimental investigation into dynamic fracture - IV. On the interaction of stress waves with propagating cracks. International Journal of Fracture 26, 189–200.

    Google Scholar 

  • Ravi-Chandar, K. and Knauss, W.G. (1987). On the characterization of the transient stress field near the tip of a crack. Journal of Applied Mechanics 54, 72–78.

    Google Scholar 

  • Ravi-Chandar, K. and Yang, B. (1997). On the role of microcracks in the dynamic fracture of brittle materials. Journal of the Mechanics and Physics of Solids 45, 535–563.

    Google Scholar 

  • Ravichandran, G. and Clifton, R.J. (1989). Dynamic fracture under plane wave loading. International Journal of Fracture 40, 157–201.

    Google Scholar 

  • Richter, H.G. and Kerkhof, F. (1994). Stress wave fractography. Fractography of Glass (Edited by R.C. Bradt and R.E. Tressler), Plenum Press, New York, 75–109.

    Google Scholar 

  • Rosakis, A.J. (1980). Analysis of the optical method of caustics for dynamic crack propagation. Engineering Fracture Mechanics 13, 331–347.

    Google Scholar 

  • Rosakis, A.J. and Zehnder, A.T. (1985). On the dynamic fracture of structural metals. International Journal of Fracture 169–186.

  • Schardin, H. (1959). Velocity effects in fracture. Fracture (Edited by Averbach et al.), John Wiley, 297–330.

  • Schardin, H. and Struth, W. (1938). Hochfrequenzkinematographische untersuchung der bruchvorgänge in glas. Glastechnische Berichte 16, 219.

    Google Scholar 

  • Shand, E.B. (1959). Breaking stress of glass determined from dimensions of fracture mirrors. Journal of the Americal Ceramic Society 42, 474–477.

    Google Scholar 

  • Slepyan, L.I. (1993). Principle of maximum energy dissipation rate in crack dynamics. Journal of the Mechanics and Physics of Solids 41, 1019–1033.

    Google Scholar 

  • Smekal (1953). Zum Bruchvorgang bei sprodem Stoffverhalten unter ein-and mehrachsigen Beanspruchungen. Osterr. Ing. Arch 7, 49–70.

    Google Scholar 

  • Stalder, B., Beguelin, P. and Kausch, H.H. (1983). A simple velocity gauge for measuring crack growth. International Journal of Fracture 22, R47–R54.

    Google Scholar 

  • Wallner, H. (1938). Linienstrukturen an bruchflächen. Z. Physik 114, 368–370.

    Google Scholar 

  • Wells, A.A. and Post, D. (1958). The dynamic stress distribution surrounding a running crack - A photoelastic analysis. Proceedings of the Society for Experimental Stress Analysis 16, 69–93.

    Google Scholar 

  • Yang, B. and Ravi-Chandar, K. (1996). On the role of the process zone in dynamic fracture. Journal of the Mechanics and Physics of Solids 44, 1955–1976.

    Google Scholar 

  • Yoffe, E. (1951). The moving Griffith crack. Philosophical Magazine 42, 739–750.

    Google Scholar 

  • Xu, X.-P. and Needleman, A. (1994). Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 42, 1397–1434.

    Google Scholar 

  • Zhurkov, S.N. (1965). Kinetic concept of strength of solids. International Journal of Fracture 1, 311–323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi-Chandar, K. Dynamic Fracture of Nominally Brittle Materials. International Journal of Fracture 90, 83–102 (1998). https://doi.org/10.1023/A:1007432017290

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007432017290

Navigation