Skip to main content
Log in

Proofs of the Structure of Lipid Coated Nanoparticles (SMBV™) Used as Drug Carriers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Supramolecular Biovectors (SMBV™) consist of cross-linkedcationic nanoparticles surrounded by a lipid membrane. Thepurpose was to study the structure of the lipid membrane and tocharacterise its interaction with the nanoparticles in order to differentiateSMBV™ from other polymer/lipid associations.

Methods. The interaction of lipids with the nanoparticle surface wasstudied using zeta potential, Fluorescence Energy Transfer (FET) andFluorescence Microscopy. SMBV™ were compared to liposomes andmixtures nanoparticles/liposomes. Finally the structure of SMBV™was visualised by Electron Microscopy.

Results. Zeta potential measurements showed that lipids on SMBV™had a pronounced shielding effect on the surface charge. This was notthe case for mixtures of nanoparticles and liposomes. FET experimentsconfirmed these results indicating that, for SMBV™, the lipids aremuch closer to the nanoparticle surface. SMBV™ Fluorescence microscopyon model microparticles showed a lipid crown on SMBV™ thatwas confirmed by electron microscopy on SMBV™ nanoparticles.

Conclusions. Results show that in case of SMBV™ lipids are stronglyadsorbed on the polysaccharide core surface probably due to ionic/hydrophobicinteractions. The resulting supramolecular structure is aspherical cationic polysaccharide particle surrounded by a phospholipid/cholesterol layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Major, E. Prieur, J. F. Tocanne, D. Betbeder, and A. M. Sautereau. Characterisation and phase behaviour of phospholipide bilayers adsorbed on spherical polysaccharide nanoparticles. Bio-chim. Biophys. Acta 1327:32–40 (1997).

    Google Scholar 

  2. C. Allal, S. Sixou, R. Kravtzoff, N. Soulet, G. Soula, and G. Favre. Supramolecular Biovectors (SMBVTM) improve antisense inhibition of erbB-2 expression. Br. J. Cancer 77:1448–1453 (1998).

    Google Scholar 

  3. M. Berton, S. Sixou, R. Kravtzoff, C. Dartigues, L. Imbertie, C. Allal, and G. Favre. Improved oligonucleotide uptake and stability by a new drug carrier, the Supramolecular Biovector (SMBVTM). Biochim. Biophys. Acta 1355:7–19 (1997).

    Google Scholar 

  4. D. Betbeder, R. Kravtzoff, I. De Miguel, S. Sixou, P. Pavco, and T. Jarvis. Conjugates of a particle vector and oligonucleotides, process for their preparation and pharmaceutical compositions containing them. PCT WO 98/29557 (1998), Chem. Abstr. No 129 (9) 105220 g.

  5. N. Castignolles, D. Betbeder, K. Ioualalem, O. Merten, C. Leclerc, D. Samain, and P. Perrin. Stabilization and enhancement of inter-leukine-2 in vitro bioactivity by new carriers: Supramolecular Biovectors. Vaccine 12:1413–1418 (1994).

    Google Scholar 

  6. N. Castignolles, S. Morgeaux, C. Gontier-Jallet, D. Samain, D. Betbeder, and P. Perrin A new family of carriers (Biovectors) enhances the immunogenicity of rabies antigens. Vaccine 14:1353–1360 (1996).

    Google Scholar 

  7. R. Kravtzoff, A. Fisher, I. de Miguel, A. Perkins, M. Major, D. Betbeder, and A. Etienne. Nasal residence time evaluation of cationic Biovector in human volunteers. Proc. Int'. Symp. Control Rel. Bioact. Mater. 25:818–819 (1998).

    Google Scholar 

  8. D. Betbeder, A. Etienne, I. De Miguel, R. Kravtzoff, and M. Major. Mucosal administration of substances to mammals. PCT WO 98/29099 (1998), Chem. Abstr. No 129 (9) 113546 h.

  9. E. Prieur, D. Betbeder, F. Niedergang, M. Major, A. Alcover, J. L. Davignon, and C. Davrinche. Combination of human cytomegalovirus recombinant immediate-early protein (IE1) with 80 nm cationic Biovectors: protection from proteolysis and potentiation of presentation to CD4 + T-Cell clones in vitro. Vaccine 14:511–520 (1996).

    Google Scholar 

  10. M. Major, R. Kravtzoff, I. De Miguel, T. Mabrouk, M. Laliberte, A. Etienne, and D. Betbeder. Biovector loaded with a trivalent split influenza vaccine administered intranasally induce a strong mucosal and seric response in mice. Proc. Int'. Symp. Control Rel. Bioact. Mater. 25:820–821 (1998).

    Google Scholar 

  11. D. Betbeder, C. Davrinche, J. L. Davignon, and E. Prieur. Method for enhancing immunogenicity, product obtained and pharmaceutical composition. PCT WO 96/06638, Chem. Abstr. No 125 (1) 8470 y.

  12. N. C. Santos, M. J. E. Prieto, A. Morna-Gomes, D. Betbeder, and M. A. R. B. Castanho. Structural characterisation (shape and dimensions) and stability of polysaccharide/lipid nanoparticles. Biopolymers 41:511–520 (1997).

    Google Scholar 

  13. N. C. Santos, A. M. A. Sousa, D. Betbeder, M. Prieto, and M. A. R. B. Castanho. Structural characterisation of organized systems of polysaccharides and phospholipids by light scattering spectroscopy and electron microscopy. Carbohydr. Res. 300:31–40 (1997).

    Google Scholar 

  14. K. Gao and L. Huang. Solid core liposomes with encapsulated gold particles. Biochim. Biophys. Acta 897:377–383 (1987).

    Google Scholar 

  15. T. Jin, P. Pennefather and P. I. Lee. Lipobeads: a hydrogel anchored lipid vesicle system. FEBS Letters 397:70–74 (1996).

    Google Scholar 

  16. I. De Miguel, K. Ioualalem, M. Bonnefous, M. Peyrot, F. Nguyen, M. Cervilla, N. Soulet, R. Dirson, V. Rieumajou, L. Imbertie, C. Soler, S. Cazes, G. Favre, and D. Samain. Synthesis and characterization of Supramolecular Biovectors (SMBVTM) specifically designed for the entrapment of ionic molecules. Biochim. Biophys. Acta 1237:49–58 (1995).

    Google Scholar 

  17. D. Samain, E. Cohen, F. Nguyen, M. Peyrot, and J. L. Bec. Particulate vector useful for the transport of molecules with biological activity and process for its preparation Eur. Pat. EP 344040 (PCT WO89/11271), Chem. Abstr. No 112 (26) 240518 z.

  18. G. Barratt. Characterisation of colloidal drug carrier systems with zeta potential measurements. Pharm. Tech. Eur. 11:25–32 (1999).

    Google Scholar 

  19. K. Makino, T. Yamada, M. Kimura, T. Oka, H. Ohshima, and T. Kondo. Temperature and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophys. Chem. 41:175–183 (1991).

    Google Scholar 

  20. H. Ringsdorf, B. Schlarb, and J. Venzmer. Molecular architecture and function of polymeric oriented systems: models for the study of organisation, surface recognition, and dynamics of biomembranes. Angew. Chem. Int. Ed. Engl. 27:113–158 (1988).

    Google Scholar 

  21. A. A. Yaroslarov, E. A. Kiseliova, O. Y. Udalykh, and V. A. Kabanov. Integrity of mixed liposomes contacting a polycation depends on the negatively charged lipid content. Langmuir 14:5160–5163 (1998).

    Google Scholar 

  22. M. N. Jones. The surface properties of phospholipid liposome systems and their characterisation. Adv. Colloid. Interface. Sci. 54:93–128 (1995).

    Google Scholar 

  23. D. K. Struck, D. Hoekstra, and R. E. Pagano. Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099 (1981).

    Google Scholar 

  24. P. Vanderwerf and E. F. Ullman. Monitoring of phospholipid vesicle fusion by fluorescence energy transfer between membrane-bound dye labels. Biochim. Biophys. Acta 596:302–314 (1980).

    Google Scholar 

  25. B. K. K. Fung and L. Stryer. Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Miguel, I., Imbertie, L., Rieumajou, V. et al. Proofs of the Structure of Lipid Coated Nanoparticles (SMBV™) Used as Drug Carriers. Pharm Res 17, 817–824 (2000). https://doi.org/10.1023/A:1007504124603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007504124603

Navigation