Skip to main content
Log in

Temperature Tolerances of North American Freshwater Fishes Exposed to Dynamic Changes in Temperature

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Traditionally lower and upper temperature tolerances of fishes have been quantified in the laboratory via three different experimental approaches: the Fry or incipient lethal temperature (ILT), critical thermal (CTM) and chronic lethal (CLM) methodologies. Although these three experimental laboratory approaches generate endpoints which are quantitatively expressed as a temperature, are determined experimentally with random samples of fish acclimated to specific temperatures, and involve both time and temperature as major test variables, they do not quantify the same response. All three approaches generate valuable, albeit different, information concerning the temperature tolerance of a species. In this review we have summarized published research concerning the tolerance of North American freshwater fishes to dynamic changes in temperature, i.e., tolerance is tested by methods that gradually change temperatures until biological stress is observed. We found more than 450 individual temperature tolerances listed in 80 publications which present original dynamic temperature tolerance data for 116 species, 7 subspecies and 7 hybrids from 19 families of North American freshwater fishes. This total represents about 1/3 of the families and 1/6 of the known North American freshwater species. Temperature tolerance data were partitioned by experimental approach, i.e., critical thermal method (CTM) and chronic lethal method (CLM), and direction of temperature change. Although both CTM and CLM expose fish to dynamic changes in water temperature, these two methods differ in temperature change rates and test endpoints, and hence measure different aspects of thermal stress. A majority of the 80 studies employed CTM to assess temperature tolerance, in particular determination of CTmaxima. One or more CTmaxima has been reported for 108 fishes. Twenty-two fishes have reported highest CTmaxima of 40°C or higher. Several species in the family Cyprinodontidae have generated some of the highest CTmaxima reported for any ectothermic vertebrate. For a variety of reasons, data concerning tolerance of low temperatures are less plentiful. Low temperature tolerance quantified as either CTminima or CLminima were found for a total of 37 fishes. Acclimation temperature exerts a major effect on the temperature tolerance of most North American fish species and it is usually strongly linearly related to both CTmaxima and CTminima. Although we uncovered dynamic temperature tolerance data for 130 fishes, only a single dynamic, temperature tolerance polygon has been published, that for the sheepshead minnow, Cyprinodon variegatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Agersborg, H.P.K. 1930. The influence of temperature on fish. Ecology 11: 136–144.

    Google Scholar 

  • Alabaster, J.S. 1963. Effects of heated effluents on fish. Intern. J. Air Wat. Poll. 7: 541–563.

    Google Scholar 

  • Alcorn, S.R. 1976. Temperature tolerance and upper lethal limits of Salmo apache. Trans. Amer. Fish. Soc. 105: 294–295.

    Google Scholar 

  • Allen, K.O. & K. Strawn. 1967. Heat tolerance of channel catfish, Ictalurus punctatus. Proc. Southeast. Assoc. Game and Fish Comm. 21: 399–411.

    Google Scholar 

  • Bailey, R.M. 1955. Differential mortality from high temperature in a mixed population of fishes in southern Michigan. Ecology 36: 526–528.

    Google Scholar 

  • Bangs, O. 1895. The present standing of the Florida manatee, Trichecus latirostris (Harlan), in Indian River waters. Amer. Nat. 29: 783–787.

    Google Scholar 

  • Becker, C.D. & R.G. Genoway. 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Env. Biol. Fish. 4: 245–256.

    Google Scholar 

  • Becker, C.D. & M.G. Wolford. 1980. Thermal resistance of juvenile salmonids sublethally exposed to nickel, determined by the critical thermal maximum method. Env. Poll. (Series A) 21: 181–189.

    Google Scholar 

  • Becker, C.D., R.G. Genoway & M.J. Schneider. 1977. Comparative cold resistance of three Columbia river organisms. Trans. Amer. Fish. Soc. 106: 178–184.

    Google Scholar 

  • Beitinger, T.L. & J.J. Magnuson. 1975. Influence of social rank and size on thermoselection behavior of bluegills (Lepomis macrochirus). J. Fish. Res. Board Can. 32: 2133–2136.

    Google Scholar 

  • Beitinger, T.L. & R.W. McCauley. 1990. Whole-animal physiological processes for the assessment of stress in fishes. J. Great Lakes Res. 16: 542–575.

    Google Scholar 

  • Beitinger, T.L., M.M. Thommes & S.A. Spigarelli. 1977. Relative roles of conduction and convection in the body temperature change of gizzard shad, Dorosoma cepedianum. Comp. Biochem. Physiol. 57A: 275–279.

    Google Scholar 

  • Belding, D.L. 1928. Water temperature and fish life. Trans. Amer. Fish. Soc. 58: 98–105.

    Google Scholar 

  • Bennett, W.A. & T.L. Beitinger. 1997. Temperature tolerance of sheepshead minnow, Cyprinodon variegatus. Copeia 1997: 77–87.

    Google Scholar 

  • Bennett, W.A. & F.W. Judd. 1992. Comparison of methods for determining low temperature tolerance: experiments with pinfish, Lagodon rhomboides. Copeia 1992: 1059–1065.

    Google Scholar 

  • Bennett, W.A., R. Currie, P.F. Wagner & T.L. Beitinger. 1997. Cold tolerance and potential overwintering of redbodied piranha, Pygocentrus nattereri, in the United States. Trans. Amer. Fish. Soc. 126: 841–849.

    Google Scholar 

  • Bennett, W.A., R.W. McCauley & T.L. Beitinger. 1998. Rates of gain and loss of heat tolerance in channel catfish. Trans. Amer. Fish. Soc. 127: 1051–1058.

    Google Scholar 

  • Bettoli, P.W., W.H. Neill & S.W. Kelsch. 1985. Temperature preference and heat resistance of grass carp, Ctenopharyngodon idella (Valenciennes), bighead carp, Hypophthalmichthys nobilis (Gray), and their F1 hybrid. J. Fish Biol. 27: 239–247.

    Google Scholar 

  • Biesinger, K.E., R.P. Brown, C.R. Bernick, G.A. Flitter & K.E.F. Hokanson. 1979. A national compendium of freshwater fish and water temperature data. Volume 1. Data management techniques, output examples and limitations. EPA, Report 600/3–79–056, Duluth. 56 pp.

    Google Scholar 

  • Black, E.C. 1953. Upper lethal temperatures of some British Columbia freshwater fishes. J. Fish. Res. Board Can. 10: 196–210.

    Google Scholar 

  • Bliss, C.I. 1937. The calculation of time-mortality curve. Ann. Appl. Biol. 24: 815–852.

    Google Scholar 

  • Bonin, J.D. 1981. Measuring thermal limits of fish. Trans. Amer. Fish. Soc. 110: 662–664.

    Google Scholar 

  • Bonin, J.D. & J.R. Spotila. 1978. Temperature tolerance of larval muskellunge (Esox masquinongy Mitchill) and F1 hybrids raised under hatchery conditions. Comp. Biochem. Physiol. 59A: 245–248.

    Google Scholar 

  • Brattstrom, B.H. 1968. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24: 93–111.

    Google Scholar 

  • Brett, J.R. 1941. Tempering versus acclimation in the planting of speckled trout. Trans. Amer. Fish. Soc. 70: 397–403.

    Google Scholar 

  • Brett, J.R. 1944. Some lethal temperature relations of Algonquin Park fishes. Univ. Toronto Studies in Biol., Series No. 52; Publ. Ont. Fish. Res. Lab. 63: 1–49.

    Google Scholar 

  • Brett, J.R. 1946. Rate of gain of heat-tolerance in goldfish (Carassius auratus). Univ. Toronto Studies in Biol., Series No. 53; Publ. Ont. Fish. Res. Lab. 64: 7–28.

    Google Scholar 

  • Brett, J.R. 1952. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Board Can. 9: 265–309.

    Google Scholar 

  • Brett, J.R. 1956. Some principles in the thermal requirements of fishes. Quart. Rev. Biol. 31: 75–87.

    Google Scholar 

  • Brett, J.R. 1970. Environmental factors, part I. Temperature. pp. 515–560. In: O. Kinne (ed.) Marine Ecology, Wiley, London.

    Google Scholar 

  • Brett, J.R. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Amer. Zool. 11: 99–113.

    Google Scholar 

  • Britton, S.W. 1924. The effects of extreme temperature on fishes. Amer. J. Physiol. 67: 411–421.

    Google Scholar 

  • Brock, T.D. 1985. Life at high temperatures. Science 230: 132–138.

    Google Scholar 

  • Bulger, A.J. 1984. A daily rhythm in heat tolerance in the salt marsh fish Fundulus heteroclitus. J. Exper. Zool. 230: 11–16.

    Google Scholar 

  • Bulger, A.J. & R.J. Schultz. 1979. Heterosis and intercloal variation in thermal tolerance in unisexual fishes. Evolution 33: 848–859.

    Google Scholar 

  • Bulger, A.J. & R.J. Schultz. 1982. Origin of thermal adaptations in northern versus southern populations of a unisexual hybrid fish. Evolution 36: 1041–1050.

    Google Scholar 

  • Bulger, A.J. & S.C. Tremaine. 1985. Magnitude of seasonal effects on heat tolerance in Fundulus heteroclitus. Physiol. Zool. 58: 197–204.

    Google Scholar 

  • Burton, D.T., E.L. Morgan & J. Cairns, Jr. 1972. Mortality curves of bluegills (Lepomis macrochirus Rafinesque) simultaneously exposed to temperature and zinc stress. Trans. Amer. Fish. Soc. 101: 435–441.

    Google Scholar 

  • Cairns, J., Jr. 1968. We're in hot water. Scient. Citizen 10: 187–198.

    Google Scholar 

  • Carey, F.G. & J.M. Teal. 1966. Heat conservation in tuna fish muscles. Proc. Nat. Acad. Sci. U.S.A. 56: 1464–1469.

    Google Scholar 

  • Carey, F.G. & J.M. Teal. 1969a. Mako and porbeagle: warm bodied sharks. Comp. Biochem. Physiol. 28: 199–204.

    Google Scholar 

  • Carey, F.G. & J.M. Teal. 1969b. Regulation of body temperature by the bluefin tuna. Comp. Biochem. Physiol. 28: 205–213.

    Google Scholar 

  • Carey, F.G., J.M. Teal, J.W. Kanwisher & K.D. Lawson. 1971. Warm bodied fish. Amer. Zool. 11: 137–145.

    Google Scholar 

  • Carrier, R. & T.L. Beitinger. 1988a. Resistance of temperature tolerance ability of green sunfish to cadmium exposure. Bull. Environ. Contam. Toxicol. 40: 475–480.

    Google Scholar 

  • Carrier, R. & T.L. Beitinger. 1988b. Reduction in thermal tolerance of Notropis lutrensis and Pimelphales promelas exposed to cadmium. Water Res. 22: 511–515.

    Google Scholar 

  • Carter, W.A. 1887. Temperature in relation to fish. Nature 36: 213–214.

    Google Scholar 

  • Castleberry, D.T. & J.C. Cech, Jr. 1992. Critical thermal maxima of five fishes from the upper Klamath basin. Calif. Fish Game 78: 145–152.

    Google Scholar 

  • Chagnon, N. & I. Hlohowskyj. 1989. Effects of phenol exposure on the thermal tolerance ability of the central stoneroller minnow. Bull. Environ. Contam. Toxicol. 42: 614–619.

    Google Scholar 

  • Cheetham, J.L., C.T. Garten, C.L. King & M.H. Smith. 1976. Temperature tolerance and preference of immature channel catfish (Ictalurus punctatus). Copeia 1976: 609–612.

    Google Scholar 

  • Clark, J.R. 1969. Thermal pollution and aquatic life. Sci. Amer. 220: 19–27.

    Google Scholar 

  • Clausen, R.G. 1934. Body temperature of freshwater fishes. Ecology 15: 139–144.

    Google Scholar 

  • Cocking, A.W. 1959. The effect of high temperature on roach (Rutilus rutilus). II. The effects of temperature increasing at a known constant rate. J. Exper. Biol. 36: 217–226.

    Google Scholar 

  • Copeland, B.J., R.W. Laney & E.C. Pendleton. 1974. Heat influences in estuarine ecosystems. pp. 423–437. In: J.W.Gibbons & R.R. Sharitz (ed.) Thermal Ecology, Nat. Tech. Inform. Serv., Springfield.

    Google Scholar 

  • Coulton, J.B., Jr. 1959. A field observation of mortality of marine fish larvae due to warming. Limn. & Ocean. 4: 219–222.

    Google Scholar 

  • Coutant, C.C. 1969. Temperature, reproduction and behavior. Chesap. Sci. 10: 261–274.

    Google Scholar 

  • Coutant, C.C. 1975. Temperature selection by fish-a factor in power plant impact assessments. pp. 575–597. In: Environmental Effects of Cooling Systems at Nuclear Power Plants, Internat. Atomic Energy Agency, Vienna.

    Google Scholar 

  • Coutant, C.C. 1977. Cold shock to aquatic organisms: guidance for power plant siting, design and operation. Nuclear Safety 18: 329–342.

    Google Scholar 

  • Coutant, C.C. 1981. Foreseeable effects of CO2-induced climate change: freshwater concerns. Environ. Conserv. 8: 285–297.

    Google Scholar 

  • Coutant, C.C. 1990. Temperature-oxygen habitat for freshwater and coastal striped bass in a changing climate. Trans. Amer. Fish. Soc. 119: 240–253.

    Google Scholar 

  • Cowles, R.B. & C.M. Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Amer. Mus. Nat. Hist. 83: 265–296.

    Google Scholar 

  • Cox, D.K. 1974. Effects of three heating rates on the critical thermal maximum of bluegill. pp. 158–163. In: J.W. Gibbons & R.R. Sharitz (ed.) Thermal Ecology, Nat. Tech. Inform. Serv., Springfield.

    Google Scholar 

  • Currie, R.J., W.A. Bennett & T.L. Beitinger. 1998. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Env. Biol. Fish. 51: 187–200.

    Google Scholar 

  • Dahlberg, M.D. & F.G. Smith. 1970. Mortality of estuarine animals due to cold off the Georgia coast. Ecology 51: 931–933.

    Google Scholar 

  • Davenport, C.B. & W.E. Castle. 1895. Studies in morphogenesis, III. On the acclimatization of organisms to high temperatures. Arch. Entwick 2: 227–249.

    Google Scholar 

  • Davies, W.D. 1973. Rates of temperature acclimation for hatchery reared striped bass fry and fingerlings. Prog. Fish-Cult. 35: 214–217.

    Google Scholar 

  • Day, F. 1885. The effects of an elevated temperature on fishes. Bull. U.S. Fish Comm. 5: 142–144.

    Google Scholar 

  • Dean, J.M. 1976. Temperature of tissues in freshwater fishes. Trans. Amer. Fish. Soc. 105: 709–711.

    Google Scholar 

  • Doudoroff, P. 1942. The resistance and acclimatization of fishes to temperature changes. I. Experiments with Girella nigricans (Ayres). Biol. Bull. 83: 219–244.

    Google Scholar 

  • Doudoroff, P. 1945. The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Bull. 88: 194–206.

    Google Scholar 

  • Eaton, J.G., J.H. McCormick, B.E. Goodno, D.G. O'Brien, H.G. Stefan, M. Hondzo & R.M. Scheller. 1995. A field information based system for estimating fish temperature tolerance. Fisheries 20: 10–18.

    Google Scholar 

  • Elliot, J.M. 1981. Some aspects of thermal stress in freshwater teleosts. pp. 209–245. In: A.D. Pickering (ed.) Stress and Fish, Academic Press, New York.

    Google Scholar 

  • Elliot, J.M. 1991. Tolerance and resistance to thermal stress in juvenile Atlantic salmon, Salmo salar. Freshwat. Biol. 25: 61–70.

    Google Scholar 

  • Elliott, J.M. & J.A. Elliott. 1995. The effect of the rate of temperature increase on the critical thermal maximum for parr of Atlantic salmon and brown trout. J. Fish Biol. 47: 917–919.

    Google Scholar 

  • Esch, G.W. & R.W. McFarlane. 1976. Thermal ecology II. Nat. Tech. Inform. Serv., Springfield. 404 pp.

    Google Scholar 

  • Feldmuth, C.R. & J.N. Baskin. 1976. Thermal and respiratory studies with references to temperature and oxygen tolerance for the unarmored stickleback Gasterosteus aculeatusWilliamson. Hubbs. Bull. South. Calif. Acad. Sci. 75: 127–131.

    Google Scholar 

  • Feldmuth, C.R., E.A. Stone & J.H. Brown. 1974. An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. J. comp. Physiol. 89: 39–44.

    Google Scholar 

  • Feminella, J.W. & W.J. Matthews. 1984. Intraspecific differences in thermal tolerances of Etheostoma spectabile (Agassiz) in constant versus fluctuating environments. J. Fish Biol. 25: 455–461.

    Google Scholar 

  • Fields, R., S.S. Lowe, C. Kaminski, G.S. Whitt & D.P. Philipp. 1987. Critical and chronic thermal maxima of northern and Florida largemouth bass and their reciprocal F1 and F2 hybrids. Trans. Amer. Fish. Soc. 116: 856–863.

    Google Scholar 

  • Fitch, R.H. 1917. Fish killed by the cold wave of February 2–4, 1917, in Florida. Month. Weather Rev. 45: 171–173.

    Google Scholar 

  • Fry, F.E.J. 1947. Effects of the environment on animal activity. Univ. Toronto Studies in Biol., Series No. 55, Publ. Ont. Fish. Res. Lab. 68: 1–62.

    Google Scholar 

  • Fry, F.E.J. 1964. Animals in aquatic environments: fishes. pp. 715–728. In: E.F. Adolph & C.G. Wilber (ed.) Handbook of Physiology, 4: Adaptation to the Environment, Amer. Physiol. Soc., Washington D.C.

    Google Scholar 

  • Fry, F.E.J. 1967. Responses of vertebrate poikilotherms to temperature. pp. 375–409. In: A.H. Rose (ed.) Thermobiology, Academic Press, London.

    Google Scholar 

  • Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. pp. 1–98. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 6, Environmental Relations and Behavior, Academic Press, New York.

    Google Scholar 

  • Fry, F.E.J., J.R. Brett & G.H. Clawson. 1942. Lethal limits of temperature for young goldfish. Revue Canad. Biol. 1: 50–56.

    Google Scholar 

  • Fry, F.E.J., J.S. Hart & K.F. Walker. 1946. Lethal temperature relations for a sample of young speckled trout (Salvelinus fontinalis). Univ. Toronto Studies in Biol., Series No. 54, Publ. Ont. Fish. Res. Lab. 66: 9–35.

    Google Scholar 

  • Galloway, J.C. 1941. Lethal effects of the cold winter of 1939/40 on marine fishes at Key West Florida. Copeia 1941: 118–119.

    Google Scholar 

  • Gelbach, F.R., C.L. Bryan & H.A. Reno. 1978. Thermal ecological features of Cyprinodon elegans and Gambusia nobilis, endangered Texas fishes. Tex. J. Sci. 30: 99–100.

    Google Scholar 

  • Gibbons, J.W. & R.R. Sharitz. 1974. Thermal ecology. Nat. Tech. Inform. Serv., Springfield. 686 pp.

    Google Scholar 

  • Grande, M. & S. Andersen. 1991. Critical thermal maxima for young salmonids. J. Freshwat. Ecol. 6: 275–279.

    Google Scholar 

  • Guest, W.C. 1985. Temperature tolerance of Florida and northern largemouth bass: effects of subspecies, fish size and season. Tex. J. Sci. 37: 75–81.

    Google Scholar 

  • Gunn, D.L. 1942. Body temperature in poikilothermal animals. Biol. Rev. 17: 293–314.

    Google Scholar 

  • Gunther, G. 1941. Death of fishes due to cold on the Texas coast, January, 1940. Ecology 22: 203–208.

    Google Scholar 

  • Gunther, G. 1947. Differential rate of death for large and small fishes caused by hard cold waves. Science 106: 472.

    Google Scholar 

  • Gunther, G. 1952. The import of catastrophic mortalities for marine fisheries along the Texas coast. J. Wildli. Manag. 16: 63–69.

    Google Scholar 

  • Gunther, G. & H.H. Hildebrandt. 1951. Destruction of fishes and other organisms on the south Texas coast by the cold wave of January 28–February 3, 1951. Ecology 32: 731–736.

    Google Scholar 

  • Hart, J.S. 1947. Lethal temperature relations of certain fish of the Toronto region. Trans. Royal Soc. Can. 41: 57–71.

    Google Scholar 

  • Hart, J.S. 1952. Geographic variations of some physiological and morphological characters in certain freshwater fish. Univ. Toronto Studies in Biol., Series No. 60, Publ. Ont. Fish. Res. Lab. 72: 1–79.

    Google Scholar 

  • Hassan, K.C. & J.R. Spotila. 1976. The effect of acclimation on the temperature tolerance of young muskellunge fry. pp. 136–140. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, Nat. Tech. Inform. Serv., Springfield.

    Google Scholar 

  • Hathaway, E.S. 1927. Quantitative study of the changes produced by acclimatization in the tolerance of high temperatures by fishes and amphibians. Bull. U.S. Bur. Fish. 43: 169–192.

    Google Scholar 

  • Heath, N. 1884. Effect of cold on fishes. Bull. U.S. Fish Comm. 4: 369–371.

    Google Scholar 

  • Heath, W.G. 1963. Thermoperiodism in sea-run cutthroat trout (Salmo clarki clarki). Science 142: 486–488.

    Google Scholar 

  • Heath, W.G. 1967. Ecological significance of temperature tolerance in Gulf of California shore fishes. J. Ariz. Acad. Sci. 4: 172–178.

    Google Scholar 

  • Heath, A.G., B.J. Turner & W.P. Davis. 1993. Temperature preference and tolerances of three fish species inhabiting hyperthermal ponds on mangrove islands. Hydrobiologia 259: 47–55.

    Google Scholar 

  • Heath, S., W.A. Bennett, J. Kennedy & T.L. Beitinger. 1994. Heat and cold tolerance of the fathead minnow, Pimephales promelas, exposed to the synthetic pyrethroid cyfluthrin. Can. J. Fish. Aquat. Sci. 51: 437–440.

    Google Scholar 

  • Hickman, G.D. & M.R. Dewey. 1973. Notes of the upper lethal temperature of the duskystripe shiner, Notropis pilsbryi, and the bluegill, Lepomis macrochirus. Trans. Amer. Fish. Soc. 102: 838–840.

    Google Scholar 

  • Hlohowskyj, I. & T.E. Wissing. 1985. Seasonal changes in the critical thermal maxima of fantail (Etheostoma flabellare), greenside (Etheostoma blenniodes), and rainbow (Etheostoma caeruleum) darters. Can. J. Zool. 63: 1629–1633.

    Google Scholar 

  • Hockett, C.T. & N.D. Munduhl. 1988. Effects of black spot disease on thermal tolerances and condition factors of three cyprinid fishes. J. Freshwat. Ecol. 5: 67–72.

    Google Scholar 

  • Holland, W.E., M.H. Smith, J.W. Gibbons & D.H. Brown. 1974. Thermal tolerances of fish from a reservoir receiving heated effluent from a nuclear reactor. Physiol. Zool. 47: 110–118.

    Google Scholar 

  • Holt, S.A. & G.J. Holt. 1983. Cold death of fishes at Post Aransas, Texas: January 1982. Southwest. Nat. 28: 464–466.

    Google Scholar 

  • Hoss, D.E., L.C. Coston & W.F. Hettler, Jr. 1972. Effects of increased temperature on post-larval and juvenile estuarine fish. Proc. Southeast. Assoc. Game and Fish Comm. 25: 635–642.

    Google Scholar 

  • Houston, A.H. 1982. Thermal effects upon fishes. Pub. Nat. Res. Council. Can. No. 18566. 200 pp.

  • Huntsman, A.G. 1942. Death of salmon and trout at high temperature. J. Fish. Res. Board Can. 5: 485–501.

    Google Scholar 

  • Huntsman, A.G. 1946. Heat stroke in Canadian maritime stream fishes. J. Fish. Res. Board Can. 6: 476–482.

    Google Scholar 

  • Huntsman, A.G. & M.I. Sparks. 1924. Limiting factors for marine animals. 3. Relative resistance to high temperatures. Contrib. Can. Biol. 2: 97–114.

    Google Scholar 

  • Hutchison, V.H. 1961. Critical thermal maxima in salamanders. Physiol. Zool. 34: 92–125.

    Google Scholar 

  • Hutchison, V.H. 1976. Factors influencing thermal tolerance of individual organisms. pp. 10–26. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, Nat. Tech. Inform. Serv., Springfield.

    Google Scholar 

  • Hutchison, V.H. & J.D. Maness. 1979. The role of behavior in temperature acclimation and tolerance in ectotherms. Amer. Zool. 19: 367–384.

    Google Scholar 

  • Ingersol, C.G. & D.L. Claussen. 1984. Temperature selection and critical thermal maxima of the fantail darter, Etheostoma flabellare, and johnny darter, E. nigrum, related to habitat and season. Env. Biol. Fish. 11: 131–138.

    Google Scholar 

  • Jennings, D.P. 1991. Behavioral aspects of cold tolerance in blackchin tilapia, Sarotheroden melanotheron, at different salinities. Env. Biol. Fish. 31: 185–195.

    Google Scholar 

  • Johnson, C.R. 1976. Diel variation in the thermal tolerance of Gambusia affinis affinis (Pisces: Poeciliidae). Comp. Biochem. Physiol. 55A: 337–340.

    Google Scholar 

  • Kaya, C.M. 1978. Thermal resistance of rainbow trout from a permanently heated stream and of two hatchery strains. Prog. Fish-Cult. 40: 138–142.

    Google Scholar 

  • Kelso, J.R.M. 1976. Movement of yellowperch (Perca flavescens) and white sucker (Catostomus commersoni) in a nearshore Great Lakes habitat subject to a thermal discharge. J. Fish. Res. Board Can. 33: 42–53.

    Google Scholar 

  • Kilgour, D.M. & R.W. McCauley. 1986. Reconciling the two methods of measuring upper lethal temperatures in fishes. Env. Biol. Fish. 17: 281–290.

    Google Scholar 

  • Kilgour, D.M., R.W. McCauley & W. Kwain. 1985. Modeling the lethal effects of high temperature on fish. Can. J. Fish. Aquat. Sci. 42: 947–951.

    Google Scholar 

  • King, T.L., E.G. Zimmerman & T.L. Beitinger. 1985. Concordant variation in thermal tolerance and allozymes of the red shiner, Notropis lutrensis, inhabiting tailwater sections of the Brazos River, Texas. Env. Biol. Fish. 13: 49–57.

    Google Scholar 

  • Konecki, J.T., C.A. Woody & T.P. Quinn. 1995. Critical thermal maxima of coho salmon (Oncorhynchus kisutch) fry under field and laboratory accimilation regimes. Can. J. Zool. 73: 993–996.

    Google Scholar 

  • Kour, E.L. & V.H. Hutchison. 1970. Critical thermal tolerances and heating and cooling rates of lizards from diverse habitats. Copeia 1970: 219–229.

    Google Scholar 

  • Kowalski K.T., J.P.Schubauer, C.L. Scott & J.R. Spotila. 1978. Interspecific and seasonal differences in the temperature tolerance of stream fish. J. Thermal Biol. 3: 105–108.

    Google Scholar 

  • Kurten, G. & P. Hutson. 1992. Critical thermal maxima of paddlefish fry and fingerlings. Manage. Data Series 83, Tex. Parks Wildl. Div., Austin. 11 pp.

    Google Scholar 

  • Larson, M.W. 1961. The critical thermal maximina of the lizard Sceloporus occidentalis occidentalis Baird and Girard. Herpetologica 17: 113–122.

    Google Scholar 

  • Lee, R.M. & J.N. Rinne. 1980. Critical thermal maxima of five trout species in the southwestern United States. Trans. Amer. Fish. Soc. 109: 632–635.

    Google Scholar 

  • Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister & J.R. Stauffer, Jr. 1980. Atlas of North American Freshwater Fishes, N. Carolina State Mus. Nat. Hist., Raleigh.

    Google Scholar 

  • Loeb, J. & H. Wasteneys. 1912. On the adaptation of fish (Fundulus) to high temperatures. J. Exper. Zool. 12: 543–557.

    Google Scholar 

  • Lohr, S.C., P.A. Byorth, C.M. Kaya & W.P. Dwyer. 1996. High temperature tolerances of fluvial Arctic grayling and comparisons with summer river temperatures of the Big Hole River, Montana. Trans. Amer. Fish. Soc. 125: 933–939.

    Google Scholar 

  • Lowe, C.H. & W.G. Heath. 1969. Behavioral and physiological responses to temperature in the desert pupfish Cyprinodon macularius. Physiol. Zool. 42: 53–59.

    Google Scholar 

  • Lowe, C.H. & V.J. Vance. 1955. Acclimation of the critical thermal maximum of the reptile Urosaurus ornatus. Science 122: 73–74.

    Google Scholar 

  • Lutterschmidt, W.I. & V.H. Hutchison. 1997a. The critical thermal maximum: data to support the onset of muscle spasm as the definitive end point. Can. J. Zool. 75: 1553–1560.

    Google Scholar 

  • Lutterschmidt, W.I. & V.H. Hutchison. 1997b. The critical thermal maximum: history and critique. Can. J. Zool. 75: 1561–1574.

    Google Scholar 

  • Lydy, M.J. & T.E. Wissing. 1988. Effect of sublethal concentrations of copper on the critical thermal maxima (CTMax) of the fantail (Etheostoma flabellare) and johnny (E. nigrum) darters. Aquat. Toxicol. 12: 311–322.

    Google Scholar 

  • Magnuson, J.J., L.B. Crowder & P.A. Medwick. 1979. Temperature as an ecological resource. Amer. Zool. 19: 331–343.

    Google Scholar 

  • Magnuson, J.J., J.D. Meisner & D.K. Hill. 1990. Potential changes in the thermal habitat of Great Lakes fish after global climate warming. Trans. Amer. Fish. Soc. 119: 254–264.

    Google Scholar 

  • Maness, J.D. & V.E. Hutchison. 1980. Acute adjustment of thermal tolerance in vertebrate ectotherms following exposure to critical thermal maxima. J. Thermal Biol. 5: 225–233.

    Google Scholar 

  • Matthews, W.J. & J.D. Maness. 1979. Critical thermal maxima, oxygen tolerance and success of cyprinid fishes in a southwestern river. Amer. Midl. Nat. 102: 374–377.

    Google Scholar 

  • Matthews, W.J. & E.G. Zimmerman. 1990. Potential effects of global warming on native fishes of the southern Great Plains and the southwest. Fisheries 15: 26–32.

    Google Scholar 

  • Matthews, W.J., E, Surat & L.G. Hill. 1982. Heat death of orangethroat darter, Etheostoma spectabile (Percidae) in a natural environment. Southwest. Nat. 27: 216–217.

    Google Scholar 

  • McCauley, R.W. & T.L. Beitinger. 1992. Predicted effects of climate warming on the commercial culture of the channel catfish, Ictalurus punctatus. GeoJournal 28: 61–66.

    Google Scholar 

  • McCauley, R.W. & D.M. Kilgour. 1990. Effect of air temperature on growth of largemouth bass in North America. Trans. Amer. Fish. Soc. 119: 276–281.

    Google Scholar 

  • McClanahan, L.L., C.R. Feldmuth, J. Jones & D.L. Stoltz. 1986. Energetics, salinity and temperature tolerance in the Mohave tui chub, Gila bicolor mohavensis. Copeia 1986: 45–52.

    Google Scholar 

  • McFarlane, R.W., B.C. Moore & S.E. Williams. 1976. Thermal tolerance of stream cyprinid minnows. pp. 141–144. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, Nat. Tech. Inform. Serv., Springfield.

    Google Scholar 

  • McLeay, D.J., A.J. Knox, J.G. Malick, I.K.Birtwell, G.Hartman & C.L. Ennis. 1983. Effects on Arctic grayling (Thymallus arcticus) of short-term exposure to Yukon placer mining sediments: laboratory and field studies. Can. Tech. Rep. Fish. Aquat. Sci., Ottawa. 1171 p.

    Google Scholar 

  • Medvick, P.A., J.J. Magnuson & S. Sharr. 1981. Behavioral thermoregulation and social interaction of bluegill, Lepomis macrochirus. Copeia 1981: 9–13.

    Google Scholar 

  • Meffe, G.K., S.C. Weeks, M. Mulvey & K.L. Kandl. 1995. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrook; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52: 2704–2711.

    Google Scholar 

  • Meisner, J.D. 1990. Potential loss of thermal habitat for brook trout, due to climaticwarming, in two southern Ontario streams. Trans. Amer. Fish. Soc. 119: 282–291.

    Google Scholar 

  • Meisner, J.D., J.L. Goodier, H.A. Regier, B.J. Shuter & W.J. Christie. 1987. An assessment of the effects of climate warming on Great Lakes Basin fishes. J. Great Lakes Res. 13: 340–352.

    Google Scholar 

  • Middaugh, D.P., W.R. Davis & R.L. Yokum. 1975. The response of larval fish, Leiostomus xanthurus, to environmental stress following sublethal cadmium exposure. Contrib. Mar. Sci. 19: 13–19.

    Google Scholar 

  • Miller, M.E. 1940. Mortality of fishes due to cold on the southeast Florida coast. Ecology 21: 420–421.

    Google Scholar 

  • Moore, R.H. 1976. Observations of fish killed by cold at Port Aransas, Texas, 11–12 January 1973. Southwest. Nat. 20: 461–466.

    Google Scholar 

  • Morrow, J.E. & A. Mauro. 1950. Body temperatures of some marine fishes. Copeia 1950: 108–116.

    Google Scholar 

  • Mundahl, N.D. 1990. Heat death of fish in shrinking stream pools. Amer. Midl. Nat. 123: 40–46.

    Google Scholar 

  • Murphy, J.C., C.T. Garten, Jr., M.H. Smith & E.A. Standora. 1976. Thermal tolerance and respiratory movement of bluegill from two populations tested at different levels of acclimation temperature andwater hardness. pp. 145–147. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, Nat. Tech. Inform. Serv., Springfield.

    Google Scholar 

  • Neill, W.H. & J.J. Magnuson. 1974. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluents from a power plant at Lake Monona, Wisconsin. Trans. Amer. Fish. Soc. 103: 663–710.

    Google Scholar 

  • Neill, W.H. & E.D. Stevens. 1974. Thermal inertia versus thermoregulation in 'warm' turtles and tunas. Science 184: 1008–1010.

    Google Scholar 

  • Otto, R.G. 1973. Temperature tolerance of the mosquitofish, Gambusia affinis (Baird and Birard). J. Fish Biol. 5: 575–585.

    Google Scholar 

  • Otto, R.G. 1974. The effects of acclimation to cyclic thermal regimes on heat tolerance of the western mosquitofish. Trans. Amer. Fish. Soc. 103: 31–335.

    Google Scholar 

  • Otto, R.G. & S.D. Gerking. 1973. Heat tolerance of a Death Valley pupfish (genus Cyprinodon). Physiol. Zool. 46: 43–49.

    Google Scholar 

  • Otto, R.G., M.A. Kitchel & J. O'Hara Rice. 1976. Lethal and preferred temperatures of the alewife (Alosa pseudoharengus) in Lake Michigan. Trans. Amer. Fish. Soc. 105: 96–106.

    Google Scholar 

  • Otto, R.G. & J. O'Hara Rice. 1977. Responses of a freshwater sculpin (Cottus cognattus gracilis) to temperature. Trans. Amer. Fish. Soc. 106: 89–94.

    Google Scholar 

  • Overstreet, R.M. 1974. An estuarine low-temperature fish-kill in Mississippi, with remarks on restricted necropsies. Gulf Res. Rep. 4: 328–350.

    Google Scholar 

  • Paladino, R.V. & J.R. Spotila. 1978. The effect of arsenic on the thermal tolerance of newly hatched muskellunge fry (Esox masquinony). J. Thermal Biol. 3: 223–227.

    Google Scholar 

  • Paladino, R.V., J.R. Spotila, J.P. Schubauer & K.T. Kowalski. 1980. The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Rev. Canad. Biol. 39: 115–122.

    Google Scholar 

  • Peterson, M.S. 1993. Thermal tolerance of Iowa and Mississippi populations of juvenile walleye, Stizostedion vitreum. Copeia 1993: 890–894.

    Google Scholar 

  • Pyron, M. & T.L. Beitinger. 1993. Temperature tolerance after spawning in female and male fathead minnows, Pimephales promelas. Tex. J. Sci. 45: 319–323.

    Google Scholar 

  • Regier, H.A., J.J. Magnuson & C.C. Coutant. 1990. Introduction to proceedings: symposium on effects of climate change on fish. Trans. Amer. Fish. Soc. 119: 173–175.

    Google Scholar 

  • Richards, V.L. & T.L. Beitinger. 1995. Reciprocal influences of temperature and copper on survival of fathead minnows, Pimephales promelas. Bull. Environ. Contam. Toxicol. 55: 230–236.

    Google Scholar 

  • Richards, F.P., W.W. Reynolds & R.W. McCauley. 1977. Temperature preference studies in environmental impact assessment: an overview with procedural recommendations. J. Fish. Res. Board Can. 34: 728–761.

    Google Scholar 

  • Rutledge, C.J. & T.L. Beitinger. 1989. The effects of dissolved oxygen and aquatic surface respiration on the critical thermal maxima of three intermittent stream fishes. Env. Biol. Fish. 24: 137–143.

    Google Scholar 

  • Schmidt-Nielsen, K. 1994. Animal physiology: adaptation and environment, 4th edition. Cambridge University Press, Cambridge. 602 pp.

    Google Scholar 

  • Schubauer, J.P., C.L. Scott, K.T. Kowalski & J.R. Spotila. 1980. Effect of tetracycline hydrochloride treatment on the critical thermal maximum of common shiner. Prog. Fish-Cult. 42: 48–49.

    Google Scholar 

  • Shafland, P.L. & J.P. Pestrak. 1982. Lower lethal temperatures for fourteen non-native fishes in Florida. Env. Biol. Fish. 7: 149–156.

    Google Scholar 

  • Simpson, A.C. 1953. Some observations on the mortality of fish and the distribution of plankton in the southern North Sea during the cold winter, 1946–1947. J. Cons. Int. Explor. Mer. 19: 150–177.

    Google Scholar 

  • Smale, M.A. & C.F. Rabeni. 1995. Hypoxia and hyperthermia tolerances of headwater stream fishes. Trans. Amer. Fish. Soc. 124: 698–710.

    Google Scholar 

  • Smith, R.K. & K.D. Fausch. 1997. Thermal tolerance and vegetation preference of Arkansas darter and johnny darter for Colorado Plains streams. Trans. Amer. Fish. Soc. 126: 676–686.

    Google Scholar 

  • Smith, M.H. & S.L. Scott. 1975. Thermal tolerance and biochemical polymorphism on immature largemouth bass Micropterus salmoides Lacepede. Georgia Acad. Sci. Bull. 34: 180–184.

    Google Scholar 

  • Spellerberg, J.F. 1973. Critical minimum temperature of reptiles. pp. 237–247. In: W. Wieser (ed.) Effects of Temperatures on Ectothermic Organisms, Springer-Verlag, New York.

    Google Scholar 

  • Spieler, R.E., T.A. Noeske & G.L. Seegert. 1977. Diel variation in sensitivity of fishes to potentially lethal stimuli. Prog. Fish-Cult. 39: 144–147.

    Google Scholar 

  • Spigarelli, S.A., G.P. Romberg, W. Preprejchal & M.M. Thommes. 1974. Body temperature characteristics of fish at a thermal discharge in Lake Michigan. pp. 119–132. In: J.W. Gibbons & R.R. Sharitz (ed.) Thermal Ecology, Nat. Tech. Inform. Serv., Springfield. Spigarelli, S.A., M.M. Thommes & T.L. Beitinger. 1977. The influence of body weight on heating and cooling in selected Lake Michigan fishes. Comp. Biochem. Physiol. 56A: 51–57.

    Google Scholar 

  • Spotila, J.R., K.M. Terpin, R.R. Koons & R.L. Bonati. 1979. Temperature requirements of fishes from eastern Lake Erie and the upper Niagara River: a review of the literature. Env. Biol. Fish. 4: 281–307.

    Google Scholar 

  • Stevens, E.D. & F.E.J. Fry. 1970. The rate of thermal exchange in a teleost, Tilapia mossambica. Can. J. Zool. 48: 221–226.

    Google Scholar 

  • Stevens, E.D. & F.E.J. Fry. 1974. Heat transfer and body temperatures in non-thermoregulatory teleosts. Can. J. Zool. 52: 1137–1145.

    Google Scholar 

  • Stevens, E.D. & A.M. Sutterlin. 1976. Heat transfer between fish and ambient water. J. Exper. Biol. 65: 131–145.

    Google Scholar 

  • Storey, M. 1937. The relation between normal range and mortality of fishes due to cold at Sanibel Island Florida. Ecology 18: 10–26.

    Google Scholar 

  • Storey, M. & E.W. Gudger. 1936. Mortality of fishes due to cold Sanibel Island, Florida, 1886–1936. Ecology 17: 640–648.

    Google Scholar 

  • Strange, R.J., R.B. Petrie & J.J. Cech. 1993. Slight stress does not lower critical thermal maximums in hatchery-reared rainbow trout. Folia Zool. 42: 251–256.

    Google Scholar 

  • Sumner, F.B. & P. Doudoroff. 1938. Some experiments upon temperature acclimatization and respiratory metabolism in fishes. Biol. Bull. 74: 403–429.

    Google Scholar 

  • Sylvester, J.R. 1975. Critical thermal maxima of three species of Hawaiian estuarine fish: a comparative study. J. Fish Biol. 7: 257–262.

    Google Scholar 

  • Tabb, D.C. & R.B. Manning. 1961. A checklist of the flora and fauna of northern Florida Bay and adjacent brackish waters of the Florida mainland collected during the period July, 1957 through September, 1960. Bull. Maritime Sci. Gulf Carib. 11: 552–649.

    Google Scholar 

  • Tabb, D.C., D.L. Bubrow & R.B. Manning. 1962. The ecology of northern Florida Bay and adjacent estuaries. Florida Board Cons. Tech. Ser. 39: 1–81.

    Google Scholar 

  • Takle, J.C.C., T.L. Beitinger & K.L. Dickson. 1983. Effect of the aquatic herbicide endothal on the critical thermal maximum of red shiner, Notropis lutrensis. Bull. Environ. Contam. Toxicol. 31: 512–517.

    Google Scholar 

  • Vernon, H.M. 1899. The death temperature of certain marine organisms. J. Physiol. 25: 131–136.

    Google Scholar 

  • Verril, A.E. 1901. A remarkable instance of the death of fishes at Bermuda in 1901. Amer. J. Sci. (Series 4) 12: 88–95.

    Google Scholar 

  • Ward, R., I.R. Blandon, T.L. King & T.L. Beitinger. 1993. Comparisons of critical thermal maxima and minima of juvenile red drum (Sciaenops ocellatus) from Texas and North Carolina. Northeast Gulf Sci. 13: 23–28.

    Google Scholar 

  • Watenpaugh, D.E. & T.L. Beitinger. 1985. Se exposure and temperature tolerance of fathead minnows, Pimephales promelas. J. Thermal Biol. 10: 83–86.

    Google Scholar 

  • Watenpaugh, D.E., T.L. Beitinger & D.W. Huey. 1985. Temperature tolerance of nitrite-exposed channel catfish. Trans. Amer. Fish. Soc. 114: 274–278.

    Google Scholar 

  • Weller, E.E., D.J. Anderson, D.L. De Angelis & C.C. Coutant. 1984. Rates of heat exchange in largemouth bass: experiment and model. Physiol. Zool. 57: 413–427.

    Google Scholar 

  • Wells, M.M. 1914. Resistance and reactions of fishes to temperature. Trans. Illinois Acad. Sci. 7: 48–59.

    Google Scholar 

  • Wells, H.W., M.J. Wells & I.E. Gray. 1961. Winter fish mortality in Pamlico Sound, North Carolina. Ecology 42: 217–219.

    Google Scholar 

  • Wilcox, J. 1887. Fish killed by cold along the Gulf of Mexico and coast of Florida. Bull. U.S. Fish Comm. 6: 123.

    Google Scholar 

  • Woiwode, J.G. & I.R. Adelman. 1992. Effects of starvation, oscillating temperatures, and photoperiod on the critical thermal maximum of hybrid striped-white bass. J. Thermal Biol. 17: 271–275.

    Google Scholar 

  • Young, J.S. & C.I. Gibson. 1973. Effects of heated effluents on migrating menhaden. Mar. Poll. Bull. 4: 94–96.

    Google Scholar 

  • Zale, A.V. & R.W. Gregory. 1989. Effect of salinity on cold tolerance of juvenile blue tilapias. Trans. Amer. Fish. Soc. 118: 718–720.

    Google Scholar 

  • Zweifel, R.G. 1957. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24: 93–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beitinger, T.L., Bennett, W.A. & McCauley, R.W. Temperature Tolerances of North American Freshwater Fishes Exposed to Dynamic Changes in Temperature. Environmental Biology of Fishes 58, 237–275 (2000). https://doi.org/10.1023/A:1007676325825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007676325825

Navigation