Skip to main content
Log in

A Natural Generalization of Hypoelasticity and Eulerian Rate Type Formulation of Hyperelasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

According to the classical hypoelasticity theory, the hypoelasticity tensor, i.e. the fourth order Eulerian constitutive tensor, characterizing the linear relationship between the stretching and an objective stress rate, is dependent on the current stress and must be isotropic. Although the classical hypoelasticity in this sense includes as a particular case the isotropic elasticity, it fails to incorporate any given type of anisotropic elasticity. This implies that one can formulate the isotropic elasticity as an integrable-exactly classical hypoelastic relation, whereas one can in no way do the same for any given type of anisotropic elasticity. A generalization of classical theory is available, which assumes that the material time derivative of the rotated stress is dependent on the rotated Cauchy stress, the rotated stretching and a Lagrangean spin, linear and of the first degree in the latter two. As compared with the original idea of classical hypoelasticity, perhaps the just-mentioned generalization might be somewhat drastic. In this article, we show that, merely replacing the isotropy property of the aforementioned stress-dependent hypoelasticity tensor with the invariance property of the latter under an R-rotating material symmetry group R⋆ G 0, one may establish a natural generalization of classical theory, which includes all of elasticity. Here R is the rotation tensor in the polar decomposition of the deformation gradient and G 0 any given initial material symmetry group. In particular, the classical case is recovered whenever the material symmetry is assumed to be isotropic. With the new generalization it is demonstrated that any two non-integrable hypoelastic relations based on any two objective stress rates predict quite different path-dependent responses in nature and hence can in no sense be equivalent. Thus, the non-integrable hypoelastic relations based on any given objective stress rate constitute an independent constitutive class in its own right which is disjoint with and hence distinguishes itself from any class based on another objective stress rate. Only for elasticity, equivalent hypoelastic formulations based on different stress rates may be established. Moreover, universal integrability conditions are derived for all kinds of objective corotational stress rates and for all types of material symmetry. Explicit, simple, integrable-exactly hypoelastic relations based on the newly discovered logarithmic stress rate are presented to characterize hyperelasticity with any given type of material symmetry. It is shown that, to achieve the latter goal, the logarithmic stress rate is the only choice among all infinitely many objective corotational stress rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Truesdell, The mechanical foundations of elasticity and fluid dynamics. J. Rational Mech. Anal. 1 (1952) 125-300; Corrections and additions, ibid 2 (1953) 593-616. Reprinted in: C. Truesdell (ed.), Continuum Mechanics I, The International Science Review Series. Gordon and Breach, New York (1965).

    MATH  MathSciNet  Google Scholar 

  2. C. Truesdell, The simplest rate theory of pure elasticity. Comm. Pure Appl. Math. 8 (1955) 123-132. Reprinted in: C. Truesdell (ed.), Continuum Mechanics III, The International Science Review Series. Gordon and Breach, New York (1965).

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Truesdell, Hypo-elasticity. J. Rational Mech. Anal. 4 (1955) 83-133. Reprinted in: C. Truesdell (ed.), Continuum Mechanics III, The International Science Review Series. Gordon and Breach, New York (1965).

    MATH  MathSciNet  Google Scholar 

  4. W. Noll, On the continuity of the solid and fluid state. J. Rational Mech. Anal. 4 (1955) 3-81. Reprinted in: C. Truesdell (ed.), Continuum Mechanics II, The International Science Review Series. Gordon and Breach, New York (1965).

    MATH  MathSciNet  Google Scholar 

  5. T.Y. Thomas, On the structure of stress-strain relation. Proc. Nat. Acad. Sci. U.S.A. 41 (1955) 716-720.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. T.Y. Thomas, Combined elastic and Prantl-Reuss stress-strain relations. Proc. National. Acad. Sci. U.S.A. 41 (1955) 720-726.

    Article  MATH  ADS  Google Scholar 

  7. T.Y. Thomas, Combined elastic and von Mises stress-strain relations. Proc. National. Acad. Sci. U.S.A. 41 (1955) 908-910.

    Article  MATH  ADS  Google Scholar 

  8. B. Bernstein and J.L. Ericksen, Work functions in hypoelasticity. Arch. Rational Mech. Anal. 1 (1958) 396-409.

    MATH  MathSciNet  ADS  Google Scholar 

  9. J.L. Ericksen, Hypoelastic potentials. Quart. Mech. Appl. Math. 11 (1958) 67-72.

    MathSciNet  Google Scholar 

  10. B. Bernstein, Relation between hypoelasticity and elasticity. Trans. Soc. Rheol. 4 (1960) 23-28.

    Article  Google Scholar 

  11. B. Bernstein, Hypoelasticity and elasticity. Arch. Rational Mech. Anal. 6 (1960) 89-104. Reprinted in: C. Truesdell (ed.), Continuum Mechanics III, The International Science Review Series. Gordon and Breach, New York (1965).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. C. Truesdell, Remarks on hypoelasticity. J. Res. Nat. Bur. Stand. B 67 (1963) 141-143.

    MATH  MathSciNet  Google Scholar 

  13. E.T. Olsen and B. Bernstein, A class of hypo-elastic non-elastic materials and their thermodynamics. Arch. Rational Mech. Anal. 86 (1984) 291-303.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. C. Truesdell, Hypoelastic shear. J. Appl. Phys. 27 (1956) 441-447. Reprinted in: C. Truesdell (ed.), Continuum Mechanics III, The International Science Review Series. Gordon and Breach, New York (1965).

    Article  MathSciNet  ADS  Google Scholar 

  15. A.E. Green, Simple extension of hypoelastic body of grade zero. J. Rational Mech. Anal. 5 (1956) 637-642.

    MATH  MathSciNet  Google Scholar 

  16. A.E. Green, Hypo-elasticity and plasticity. Proc. Roy. Soc. London A234 (1956) 46-59.

    MATH  ADS  Google Scholar 

  17. A.E. Green, Hypo-elasticity and plasticity II. Arch. Rational Mech. Anal. 5 (1956) 725-734.

    MATH  Google Scholar 

  18. J.K. Dienes, On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica 32 (1979) 217-232.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.K. Dienes, A discussion of material rotation and stress rate. Acta Mechanica 65 (1987) 1-11.

    Article  MATH  Google Scholar 

  20. S.N. Atluri, On constitutive relations at finite strain: Hypoelasticity and elastoplasticity with isotropic or kinematic hardening. Comp. Methods Appl. Mech. Engrg. 43 (1984) 137-171.

    Article  MATH  Google Scholar 

  21. A.S. Khan and S.J. Huang, Continuum Theory of Plasticity. Wiley, New York (1995).

    MATH  Google Scholar 

  22. C. Truesdell and W. Noll, The nonlinear field theories of mechanics. In: S. Flügge (ed.), Handbuch der Physik, Bd III/3. Springer, Berlin (1965) (2nd edition, 1992).

    Google Scholar 

  23. T. Tokuoka, Yield conditions and flow rules derived from hypo-elasticity. Arch. Rational Mech. Anal. 42 (1971) 239-252.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. T. Tokuoka, Thermo-hypo-elasticity and derived fracture and yield conditions. Arch. Rational Mech. Anal. 46 (1973) 114-130.

    MathSciNet  ADS  Google Scholar 

  25. M.E. Gurtin, The linear theory of elasticity. in: S. Flügge (ed.), Handbuch der Physik, Bd VIa/2. Springer, Berlin (1972).

    Google Scholar 

  26. M.E. Gurtin, On the hypoelastic formulation of plasticity using the past maximum of stress. ASME J. Appl. Mech. 50 (1983) 894-896.

    Article  MATH  MathSciNet  Google Scholar 

  27. W.F. Chen and A.F. Saleeb, Constitutive Equations for Engineering Materials. Vol. 1: Elasticity and Modeling, revised Elsevier, New York (1994).

    Google Scholar 

  28. S. Stören and J.R. Rice, Localized necking in thin sheets. J. Mech. Phys. Solids 23 (1975) 421-441.

    Article  MATH  ADS  Google Scholar 

  29. A. Needleman and V. Tvergaard, Necking of biaxially stretched elastoplastic circular plates. J. Mech. Phys. Solids 25 (1977) 159-183.

    Article  MATH  ADS  Google Scholar 

  30. J.W. Hutchinson and K.W. Neale, Sheet necking-II. Time-independent behavior. In: D.P. Koistinen and N.M. Wang (eds.), Mechanics of Sheet Metal Forming. Plenum, New York (1978) pp. 127-153.

    Google Scholar 

  31. J.W. Hutchinson and K.W. Neale, Finite deformation J 2 deformation theory. In: D.E. Carlson and R.T. Shield (eds), Finite Elasticity. Martinus Nijhoff Publishers, The Hague (1980) pp. 137-147.

    Google Scholar 

  32. J.W. Rudnicki and J.R. Rice, Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23 (1975) 371-394.

    Article  ADS  Google Scholar 

  33. K.W. Neale, Phenomenological constitutive laws in finite plasticity. Solid Mech. Arch. 6 (1981) 79-128.

    MATH  Google Scholar 

  34. S. Nemat-Nasser, Phenomenological theories of elastoplasticity and strain localization at high strain rates. Appl. Mech. Rev. 45 (1992) S19-S45.

    MathSciNet  Google Scholar 

  35. S. Nemat-Nasser, On finite plastic flow of crystalline solids and geomaterials. ASME J. Appl. Mech. 50 (1983) 1114-1126.

    Article  MATH  Google Scholar 

  36. A.E. Green and B.C. McInnis, Generalized hypoelasticity. Proc. Roy. Soc. Edinburgh A 57 (1967) 220-230.

    MathSciNet  Google Scholar 

  37. R. Hill, Aspects of invariance in solid mechanics. Ad. Appl. Mech. 18 (1978) 1-75.

    MATH  Google Scholar 

  38. R.W. Ogden, Non-Linear Elastic Deformations. Ellis Horwood, Chichester, (1984).

    Google Scholar 

  39. H. Xiao, O.T. Bruhns and A. Meyers, Strain rates and material spins. J. Elasticity 52 (1998) 1-41.

    Article  MATH  MathSciNet  Google Scholar 

  40. H. Xiao, Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain. Internat. J. Solids Structures 32 (1995) 3327-3340.

    Article  MATH  MathSciNet  Google Scholar 

  41. H. Xiao, O.T. Bruhns, and A. Meyers, Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50 (1998) 1015-1045.

    MATH  MathSciNet  Google Scholar 

  42. A. Hoger, The stress conjugate to the logarithmic strain. Internat. J. Solids Structures 23 (1987) 1645-1656.

    Article  MATH  MathSciNet  Google Scholar 

  43. H. Xiao, O.T. Bruhns, and A. Meyers, On objective corotational rates and their defining spin tensors. Int. J. Solids Structures 35 (1998) 4001-4014.

    Article  MATH  MathSciNet  Google Scholar 

  44. A.E. Green and P.M. Naghdi, A general theory of an elastic-plastic continuum. Arch. Rational Mech. Anal. 18 (1965) 251-281.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. M. Scheidler, The tensor equation AX + XA = Φ(A, H), with applications to kinematics of continua. J. Elasticity 36 (1994) 117-153.

    Article  MATH  MathSciNet  Google Scholar 

  46. Th. Lehmann, Z.H. Guo and H.Y. Liang, The conjugacy between Cauchy stress and logarithm of the left stretch tensor. European J. Mech. A 10 (1991) 395-404.

    MATH  MathSciNet  Google Scholar 

  47. W.D. Reinhardt and R.N. Dubey, Eulerian strain-rate as a rate of logarithmic strain. Mech. Res. Commun. 22 (1995) 165-170.

    Article  MATH  Google Scholar 

  48. W.D. Reinhardt and R. N. Dubey, Coordinate-independent representations of spins in continuum mechanics. J. Elasticity 42 (1996) 133-144.

    MATH  MathSciNet  Google Scholar 

  49. H. Xiao, O.T. Bruhns and A. Meyers, A new aspect in kinematics of large deformations. In: N.K. Gupta (ed.), Plasticity and Impact Mechanics. New Age Intern. Publ., New Delhi (1996) pp. 100-109.

    Google Scholar 

  50. H. Xiao, O.T. Bruhns and A. Meyers, Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 124 (1997) 89-105.

    Article  MATH  MathSciNet  Google Scholar 

  51. H. Xiao, General irreducible representations for constitutive equations of elastic crystals and transversely isotropic elastic solids. J. Elasticity 39 (1995) 47-73.

    MATH  MathSciNet  Google Scholar 

  52. H. Xiao, On minimal representations for constitutive equations of anisotropic elastic materials. J. Elasticity 45 (1996) 13-32.

    Article  MATH  MathSciNet  Google Scholar 

  53. H. Xiao, On constitutive equations of Cauchy's elastic solids: All kinds of crystals and quasicrystals. J. Elasticity 48 (1997) 241-283.

    Article  MATH  MathSciNet  Google Scholar 

  54. H. Xiao, On anisotropic scalar functions of a single symmetric tensor. Proc. Roy. Soc. London A 452 (1996) 1545-1561.

    Article  MATH  ADS  Google Scholar 

  55. H. Xiao, On anisotropic invariants of a single symmetric tensor: crystal classes, quasicrystal classes and others. Proc. Roy. Soc. London A 454 (1998) 1217-1240.

    MATH  ADS  Google Scholar 

  56. H. Xiao, O.T. Bruhns and A. Meyers, Hypoelasticity model based upon the logarithmic stress rate. J. Elasticity 47 (1997) 51-68.

    Article  MATH  MathSciNet  Google Scholar 

  57. J.C. Simó and K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: Computational implications. Comp. Methods Appl. Mech. Engrg. 46 (1984) 201-215.

    Article  MATH  Google Scholar 

  58. H. Xiao, O.T. Bruhns and A. Meyers, Existence and uniqueness of the integrable-exactly hypoelastic equation i* = λ(trD)I + 2μ D and its significance to finite inelasticity. Acta Mech. 138 (1999) 31-50.

    Article  MATH  Google Scholar 

  59. O.T. Bruhns, H. Xiao and A. Meyers, Self-consistent Eulerian rate type elastoplasticity models based upon the logarithmic stress rate. Internat. J. Plasticity 15 (1999) 479-520.

    Article  MATH  Google Scholar 

  60. R.M. Brannon, Caveats concerning conjugate stress and strain measures for frame indifferent anisotropic elasticity. Acta Mech. 129 (1998) 107-116.

    Article  MATH  MathSciNet  Google Scholar 

  61. H. Xiao, Invariant characteristic representations for classical and micropolar anisotropic elasticity tensors. J. Elasticity 40 (1995) 239-265.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Bruhns, O. & Meyers, A. A Natural Generalization of Hypoelasticity and Eulerian Rate Type Formulation of Hyperelasticity. Journal of Elasticity 56, 59–93 (1999). https://doi.org/10.1023/A:1007677619913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007677619913

Navigation