Skip to main content
Log in

Dynamics of total lipids and fatty acids during embryogenesis and larval development of Eurasian perch (Perca fluviatilis)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Total lipid and fatty acid compositions were determined during embryogenesis and larval development in Eurasian perch (Perca fluviatilis). During embryonic development, perch did not catabolize lipids and fatty acids as an energy source. However, during larval development, there was an exponential relationship between the decrease in total lipids and the duration of starving (r 2=0.9957) and feeding (r 2=1). The duration of the starving period (10 days post hatching) was shorter than the feeding period (35 days post hatching). In both starved and fed larvae, there is an apparent preference in utilization of polyunsaturated fatty acids followed by monounsaturated fatty acids. Saturated fatty acids were utilized by neither fed perch larvae nor by starved perch larvae. In starved larvae, palmitoleic 16:1(n-7) and oleic 18:1(n-9) acids were the preferentially monounsaturated fatty acids catabolized and their contribution as energy source from total fatty acids catabolized over the first week was 37.6%. In fed larvae, these 2 nutrients were also the most monounsaturated fatty acids utilized as energy source and possibly also as precursors for others monounsaturated fatty acids biosynthesis. During the same period and among (n-6) polyunsaturated fatty acids, starved perch utilized less linoleic 18:2(n-6) and arachidonic 20:4(n-6) acids than fed larvae despite the fact that the starved perch were in more unfavorable nutritional conditions. In the case of (n-3) fatty acids, starved larvae utilized more linolenic acid 18:3(n-3) and less eicosapentaenoic 20:5(n-3) acid and docosahexaenoic 22:6(n-3) acid than fed perch. Starved larvae probably spared 20:5(n-3) and 22:6(n-3) for physiological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abi-ayad, S.-M. E.-A. 1998. Étude expérimentale de la biologie de la reproduction de la perche fluviatile (Perca fluviatilis). Effet de la composition en acides gras de la série (n-3) de l'alimentation des géniteurs sur la qualité des oeufs et des larves. Ph.D. thesis. Liège, Belgique.

  • Abi-ayad, S.-M. E.-A., Mélard, C. and Kestemont, P. 1997. Effects of n-3 fatty acids in Eurasian perch broodstock diet on egg fatty acid composition and larvae stress resistance. Aquaculture Internat. 5: 161-168.

    Google Scholar 

  • Bell, J.G., Sargent, J.R. and Raynard, R.S. 1992. Effects of increasing dietary linoleic acid on phospholipid fatty acid composition and eicosanoid production in leucocytes and gill cells of Atlantic salmon (Salmo salar). Prostaglandins, Leukotrienes and Essential fatty acids 45: 197-206.

    Google Scholar 

  • Bell, M.V. and Tocher, D.R. 1989. Molecular species composition of the major phospholipids in brain and retina from rainbow trout (Salmo gairdneri). J. Biochem. 264: 909-915.

    Google Scholar 

  • Bell, M.V. and Dick, J. 1991. Molecular species composition of the major diacyl glycero-phospholipids from muscle, liver, retina and brain of cod (Gadus morhua). Lipids 26: 565-573.

    Google Scholar 

  • Boulekbache, H. 1981. Energy metabolism in fish development. Am. Zool. 12: 377-389.

    Google Scholar 

  • Bourre, J-M., François, M., Weidner, C., Youyou, A., Dumont, O., Piciotti, M., Pascal, G. and Durand, G. 1988. Importance de l'acide linolénique alimentaire sur la composition des membranes nerveuses, le contrôle d'activités enzymatiques, l'amplitude de paramètres électrophysiologiques, la résistance aux toxiques et les performances d'apprentissage. In: Biologie des Lipides chez l'Homme. De la Physiologie à la Pathologie. pp. 43-64. Edited by L. Douste-Blazy and F. Mendy. CNRSCNERNA, Editions Médicales Internationales.

  • Cetta, C.M. and Capuzzo, J.M. 1982. Physiological and biochemical aspects of embryonic and larval development of the winter flounder (Pseudopleuronectes americanus). Mar. Biol. 71: 327-337.

    Google Scholar 

  • Christie, W.W. 1973. Lipid analysis. Isolation, separation, identification and structural analysis of lipids. Pergamon Press, Oxford.

    Google Scholar 

  • Cowey, C.B., Bell, J.G., Knox, D., Fraser, A. and Youngson, A. 1985. Lipids and antioxidant systems in developing eggs of salmon (Salmo salar). Lipids 20: 567-572.

    Google Scholar 

  • Csengeri, I. and Dey, I. 1995. Fatty acid metabolism in carp during early ontogeny. In: Fish and Shellfish Larviculture Symposium (Larvi '95). p. 161. Edited by P. Lavens, E. Jaspers and I. Roelants. September 3-7, 1995, Gent, Belgium. European Aquaculture Society, Special Publication 24.

    Google Scholar 

  • d'Hainaut, L. 1975a. Concepts et méthodes de la statistique (tome 1). Education 2000, Edition Labor, Bruxelles et Fernand Nathan, Paris.

    Google Scholar 

  • d'Hainaut, L. 1975b. Concepts et méthodes de la statistique (tome 2). Education 2000, Edition Labor, Bruxelles et Fernand Nathan, Paris.

    Google Scholar 

  • Dabrowski, K., Culver, D.A., Brooks, C.L. and Voss, A.C. 1991. Biochemical aspects of the early life history of yellow perch (Perca flavescens). In: Fish Nutrition in Practice. pp. 531-539. Edited by S.J. Kaushik and P. Luquet. June 24-27, Biarritz (France).

  • Di Costanzo, G., Duportail, G., Florentz, A. and Leray, C. 1983. The brush border membrane of trout intestine: influence of its lipid composition on ion permeability, enzyme activity and membrane fluidity. Mol. Physiol. 4: 279-290.

    Google Scholar 

  • Fiogbé, E.D. 1996. Contribution à l'étude des besoins nutritionnels chez les larves et juvéniles de la perche fluviatile Perca fluviatilisL. Presses Universitaires de Namur, Namur, Belgique.

    Google Scholar 

  • Fraser, A.J., Gamble, J.C. and Sargent, J.R. 1988. Changes in lipid content, lipid class composition and fatty acid composition of developing eggs and unfed larvae of cod (Gadus morhua). Mar. Biol. 99: 307-313.

    Google Scholar 

  • Goetz, W.F., Duman, P., Ranjan, M. and Herman, C.A. 1989a. Prostaglandin F and E synthesis by specific tissue components of the brook trout (Salvelinus fontinalis) ovary. J. Exp. Zool. 250: 196-205.

    Google Scholar 

  • Goetz, W.F., Duman, P. and Janowsky, E.G. 1989b. The role of prostaglandins in the control of ovulation in yellow perch, Perca flavescens. Fish Physiol. Biochem. 7: 163-168.

    Google Scholar 

  • Guyot, E., Connes, R. and Diaz, J.P. 1993. Résorption des réserves vitellines et passage de l'endotrophie à l'exotrophie chez la larve de daurade (Sparus aurata) nourrie et à jeun. In: Production, Environment and Quality. pp. 213-226. Edited by G. Barnabe and P. Kestemont. Bordeaux Aquaculture 92.

  • Heming, T.A. and Buddington, R.K. 1988. Yolk absorption in embryonic and larval fishes. In: The Physiology of Developing Fish “Eggs and Larvae”. Vol. XI A, pp. 407-446. Edited by W.W. Hoar and D.J. Randall. Academic Press, London.

    Google Scholar 

  • Kates, M. 1975. Techniques of lipidology: Isolation, Analysis and Identification of lipids. North Holland Publishing Company, Amsterdam. Oxford, American Elsevier Publishing Co., Inc., New York.

    Google Scholar 

  • Kestemont, P., Cooremans, J., Abi-ayad, S.-M E.-A. and Mélard, C. 1999. Cathepsin L in eggs and larvae of perch Perca fluviatilis: Variations with developmental stage and spawning period. Fish Physiol. Biochem. 21: 59-64.

    Google Scholar 

  • Lovell, T. 1988. Nutrition and feeding of fish. Auburn University, Auburn, Alabama.

    Google Scholar 

  • Mélard C. and Kestemont P. 1993. Mise au point de l'élevage intensif d'espèces nouvelles pour la consommation et le repruplement: cyprinidés et percidés. Rapport de recherche à la Région Wallonne, Université de Liège et Facultés Universitaires N. D. de la Paix à Namur.

  • Mourente, G. and Tocher, D.R. 1992a. Effects of weaning onto a pelleted diet on docosahexaenoic acid (22:6n-3) levels in brain of developing turbot (Scophthalmus maximusL.). Aquaculture 105: 363-377.

    Google Scholar 

  • Mourente, G., Tocher, D.R. and Sargent, J.R. 1991. Specific accumulation of docosahexaenoic acid (22:6n-3) in brain lipids during development of juvenile turbot (Scophthalmus maximusL.). Lipids 26: 871-877.

    Google Scholar 

  • Murata, H. and Higashi, T. 1980. Selective utilization of fatty acids as energy source in carp. Bull. Jap. Soc. Scient. Fish. 46: 1333-1338.

    Google Scholar 

  • Navarro, J.C. and Sargent, J.R. 1992. Behavioural differences in starving herring Clupea harengusL. Larvae correlate with body levels of essential fatty acids. J. Fish Biol. 41: 509-513.

    Google Scholar 

  • Planas, M., Ferreiro, M.J., Fernandez-Reiriz, M.J. and Labarta, U. 1989. Evolution de la composicion bioquimica y actividades enzimaticas en huevos de rodaballo (Scophthalmus maximusL.) durante la embriogénesis. In: Acuicultura Intermareal. pp. 215-227. Edited by M. Yufera. Andalucia, Cadiz.

  • Planas, M., Labarta, U., Fernandez-Reiriz, M.J., Ferreiro, M.J., Munilla, R. and Garrido, J.L. 1990. Chemical changes during early development in turbot (Scophthalmus maximus) eggs and larvae. In: Development and Aquaculture of Marine Fish Larvae. pp. 1-13. Bergen, Norway.

  • Sargent, J.R. 1995. Origins and functions of egg lipids: Nutritional implications. In: Broodstock Management and Egg and Larval Quality. pp. 353-372. Edited by N. R. Bromage and R.J. Roberts. Blackwell Sciences Ltd., Oxford.

    Google Scholar 

  • Sargent, J.R., Henderson, R.J. and Tocher, D.R. 1989. The lipids. In: Fish Nutrition. pp. 153-218. Edited by J. Halver. Academic Press, New York.

    Google Scholar 

  • Takeushi, T. and Watanabe, T. 1982a. Effects of starvation and environmental temperature on proximate and fatty acid compositions of carp and rainbow trout. Bull. Jap. Soc. Scient. Fish. 48: 1307-1316.

    Google Scholar 

  • Tidwell, J.H., Webster, C.D. and Clark, J.A. 1992. Effects of feeding, starvation, and refeeding on the fatty acid composition of channel catfish (Ictalurus punctatus) tissues. Comp. Biochem. Physiol. 103: 365-368.

    Google Scholar 

  • Tocher, D.R. and Sargent, J.R. 1990. Incorporation into phospholipid classes and metabolism via desaturation and elongation of various 14C-labelled (n-3) and (n-6) polyunsaturated fatty acids in trout astrocytes in primary culture. J. Neurochem. 54: 2118-2124.

    Google Scholar 

  • Tocher, D.R., Fraser, A.J., Sargent, J.R. and Gamble, J.C. 1985a. Fatty acid composition of phospholipids and neutral lipids during embryonic and early larval development in Atlantic herring (Clupea harengusL.). Lipids 20: 69-74.

    Google Scholar 

  • Tocher, D.R., Fraser, A.J., Sargent, J.R. and Gamble, J.C. 1985b. Lipid class composition during embryonic and early larval development in Atlantic herring (Clupea harengusL.). Lipids 20: 84-89.

    Google Scholar 

  • Tocher, D.R., Bell, J.G. and Sargent, J.R. 1991. Incorporation of (3H) Arachidonic and (14C) eicosapentaenoic acids into glycerophospholipids and their metabolism via lipoxygenases in isolated brain cells from rainbow trout (Oncorhynchus mykiss). J. Neurochem.: 2078--2085.

  • Tocher, D.R., Mourente, G. and Sargent J.R. 1992. Metabolism of (1-14C) docosahexaenoate (22:6n-3), (1-14C) eicosapentaenoate (20:5n-3) and (1-14C) linolenate (18:3n-3) in brain cells from juvenile turbot (Scophthalmus maximus). Lipids 27: 494-499.

    Google Scholar 

  • Vetter, R.D., Hodson, R.E. and Arnold, C. 1983. Energy metabolism in a rapidly developing marine fish egg, the red drum (Sciaenops ocellata). Can. J. Fish. Aquat. Sci. 40: 627-634.

    Google Scholar 

  • Wright, S. 1980. Samson Wright's applied physiology. Oxford University Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abi-Ayad, SMA., Kestemont, P. & Mélard, C. Dynamics of total lipids and fatty acids during embryogenesis and larval development of Eurasian perch (Perca fluviatilis). Fish Physiology and Biochemistry 23, 233–243 (2000). https://doi.org/10.1023/A:1007891922182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007891922182

Navigation