Skip to main content
Log in

Determination of biomass dry weight of marine microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Total biomass dry weight (DW) and ash free dry weight (AFDW) of five species of marine microalgae, Dunaliella sp., Isochrysis galbana, Nannochloropsis sp., Nitzschiaclosterium and Porphyridium cruentum, retained on filter paper, were determined. Dunaliella and Isochrysis cells have no cell wall; Nannochloropsis, Nitzschia and Porphyridium possess a cell wall and Nitzschia and Porphyridium cells are covered by silica and mucilage coating, respectively. In all these algae, DW of non-washed samples was at least 1.2 times higher than those washed by distilled water,0.9% sodium chloride, 0.5 M ammonium formate or 0.5 M ammonium bicarbonate. DW of 0.9% sodium chloride washed samples was more than 0.8 times higher than the other three washed samples. In most of the cases, there was no significant difference between DW of samples washed by ammonium formate and ammonium bicarbonate solutions (p>0.05). The AFDW of the non-washed algal samples was about twice that washed samples, and could be accounted for by volatile component in the sea water medium. Isotonic solution of ammonium bicarbonate is a satisfactory washing agent for algal cells for dry weight determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto M, Ishil T, Yamagaki K, Ohtaguchi K, Kiode K, Yazawa K (1990) Production of eicosapentaenoic acid by a bacterium isolated from mackerel intestines. JAOCS 67: 911–915.

    CAS  Google Scholar 

  • Bajpai PK, Bajpai P, Ward OP (1991) Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304. JAOCS 68: 509–514.

    CAS  Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21: 72–81.

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  CAS  Google Scholar 

  • Brown MR, Dunstan GA, Jeffey SW, Volkman JK, Barrett SM, LeRoi JM (1993) The influence of irradiance on the biochemical composition of the Prymnesiophyte Isochrysis sp. (clone-T.iso). J. Phycol. 29: 601–612.

    Article  CAS  Google Scholar 

  • Brown MR, Farmer CL (1994) Riboflavin content of six species of microalgae used in mariculture. J. appl. Phycol. 6: 61–65.

    Article  CAS  Google Scholar 

  • Brown MR, Jeffrey SW (1992) Biochemical composition ofmicroalgae from the green algal classes Chlorophyceace and Prasionophyceace I. Amino acids, sugars and pigments. J. exp. mar. Biol. Ecol. 161: 91–113.

    Article  CAS  Google Scholar 

  • Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J. appl. Phycol. 6: 67–74.

    Article  Google Scholar 

  • Chu W-L, Phang S-M, Goh S-H (1994) Studies on the production of useful chemical, especially fatty acids in the marine diatom Nitzschia conspicua Grunow. Hydrobiologia 285: 33–40.

    Article  CAS  Google Scholar 

  • Craigie JS, Correa JA, Gordon ME (1992) Cuticles from Chondrus crispus (Rhodophyta). J. Phycol. 28: 777–786.

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  • Goldman JC, Dennet MR (1985) Susceptibility of somemarine phytoplankton species to cell breakage during filtration and post-filtration rinsing. J. exp. mar. Biol. Ecol. 86: 47–58.

    Article  Google Scholar 

  • Henderson RJ, Leftley JW, Sargent JR (1988) Lipid composition and biosynthesis in the marine dinoflagellate Crypthecodinium cohii. Phytochemistry 27: 1679–1683.

    Article  CAS  Google Scholar 

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In Norris JR, Ribbons DW (eds), Methods in Microbiology, vol. 5B, Academic Press, London, 244–279.

    Google Scholar 

  • Hu Q, Richmond A (1994) Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J. appl. Phycol. 6: 391–396.

    Article  Google Scholar 

  • Jones RF, Speer HL, Dury W (1963) Studies on the growth of the red alga Porphyridium cruentum. Physiologia Plantarum 16: 636–643.

    Article  CAS  Google Scholar 

  • Kates M (1972) Technology of lipidology. Isolation, analysis and identification of lipids. In Work TS, Work E (eds), Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier, Amsterdam, 268–681.

    Google Scholar 

  • López-Alonso D, Sánchez-Pérez JA, García-Sánchez JL, García-Camacho F, Molina-Grima E (1993) Improvement of eicosapentaenoic acid content in isolates of Isochrysis galbana. J. mar. Biotechnol. 1: 147–149.

    Google Scholar 

  • Molina-Grima E, Sánchez-Pérez JA, García-Camacho F, García-Sánchez JL, Acién-Fernández FG, López-Alonso D (1994) Outdoor culture of Isochrysis galbana ALII4 in a closed tubular photobioreactor. J. Biotechnol. 37: 159–166.

    Article  CAS  Google Scholar 

  • Pillsbury KS (1985) The relative food value and biochemical composition of five phytoplankton diets for queen conch, Strombus gigas (Linne) larvae. J. exp. mar. Biol. Ecol. 90: 221–231.

    Article  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol. 30: 972–979.

    Article  CAS  Google Scholar 

  • Saoudi-Helis L, Dubacq J-P, Samain J-F, Gudin C (1994) Influence of growth rate on pigment and lipid composition of the miroalga Isochrysis aff. galbana clone T.iso. J. appl. Phycol. 6: 315–322.

    Article  CAS  Google Scholar 

  • Spriharan S, Bagga D, Nawaz M (1991) The effects of nutrients and temperature on biomass, growth, lipid production, and fatty acid composition of Cyclotella cryptica Reimann, Lewin, and Guillard. Appl. Biochem. Biotech. 28/29: 317–326.

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1968) A Practicle Handbook of Seawater Analysis. Fish. Res. Bd Canada, Ottawa: 181–184.

    Google Scholar 

  • Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the class Eustigmatophyceace. J. Phycol. 29: 69–78.

    Article  CAS  Google Scholar 

  • Walne PR (1966) Experiments on the large-scale culture of the larvae of Ostrea edulis. Fishery Invest., London, Ser. 2, 25, 53 pp.

  • Wikfors GH, Ferris GE, Smith BC (1992) The relationship between gross biochemical composition of cultured algal foods and growth of the hard clam, Mercenaria mercenaria (L.). Aquaculture 108: 135–154.

    Article  CAS  Google Scholar 

  • Windholz M, Budavari S, Blumetti RF, Otterbein ES (1983) The Merck Index — An encyclopedia of chemicals, drugs, and biologicals. Merck & Co., Rabway, 75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C.J., Lee, Y.K. Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology 9, 189–194 (1997). https://doi.org/10.1023/A:1007914806640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007914806640

Navigation