Skip to main content
Log in

Effects of changing landscape pattern and U. S. G. S. land cover data variability on ecoregion discrimination across a forest-agriculture gradient

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

We examined the use of coarse resolution land cover data (USGS LUDA) to accurately discriminate ecoregions and landscape-scale features important to biodiversity monitoring and management. We used land cover composition and landscape indices, correlation and principal components analysis, and comparison with finer-grained Landsat TM data, to assess how well LUDA data discriminate changing patterns across an agriculture-forest gradient in Minnesota, U.S.A. We found LUDA data to be most accurate at general class levels of agriculture and forest dominance (Anderson Level I), but in consistent and limited in ecotonal areas of the gradient and within forested portions of the study region at finer classes (Anderson Level II).

We expected LUDA to over-represent major (matrix) cover types and under-represent minor types, but this was not consistent with all classes. 1) Land cover types respond individualistically across the gradient, changing landscape grain as well as their spatial distribution and abundance. 2) Agriculture is not over-represented where it is the dominant land cover type, but forest is over-represented where it is dominant. 3) Individual forest types are under-represented in an open land matrix. 4) Within forested areas, mixed deciduous-coniferous forest is over-represented by several orders of magnitude and the separate conifer and hardwood types under-represented. Across gradual, transitional agriculture-forest areas, LUDA cover class dominance changes abruptly in a stair-step fashion. In general, rare cover types that are discrete, such as forest in agriculture or wetlands or water in forest, are more accurately represented than cover classes having lower contrast with the matrix. Northward across the gradient, important changes in the proportions of conifer and deciduous forest mixtures occur at scales not discriminated by LUDA data. Results suggest that finer-grained data are needed to map within-state ecoregions and discriminate important landscape characteristics. LUDA data, or similar coarse resolution data sources, should be used with caution and the biases fully understood before being applied in regional landscape management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, D. A. 1995. Regional landscape ecosystems of Michigan, Minnesota, and Wisconsin: A working map and classification. U. S. D. A. Forest Service, North Central Forest Experiment Station. General Technical Report NC-178. St. Paul, MN. 250pp.

  • Anderson, J. R., E. E. Hardy, J. T. Roach, and R. E. Witmer. 1976. A land use and land cover classification system for use with remote sensor data: U.S. Geological Survey Professional Paper 964, 28 pp.

  • Askins, R. A., M. J. Philbrick, and D. S. Sugeno. 1987. Relationship between the regional abundance of forest and the composition of forest bird communities. Biological Conservation 39: 129–152.

    Article  Google Scholar 

  • Bailey, R. G., P. E. Avers, T. King, and W. H. McNab. 1994. Ecoregions and Subregions of the United States. Map. USDA Forest Service.

  • Bauer, M. E., T. E. Burk, A. R. Ek, P. R. Coppin, S. D. Lime, T. A. Walsh, D. K. Walters, W. Befort, and D. F. Heinzen. 1994. Satellite inventory of Minnesota forest resources. Photogrammetric Engineering and Remote Sensing 60: 287–298.

    Google Scholar 

  • Brittingham, M. C., and S. A. Temple. 1983. Have cowbirds caused forest songbirds to decline? Bioscience 33: 31–35.

    Article  Google Scholar 

  • ESRI, Inc. 1990. ARC/INFO User's manual. Environmental Systems Research Institute, Inc. Redlands, California, USA.

    Google Scholar 

  • Fegeas, R. G., R. W. Claire, S. C. Guptill, K. G. Anderson, and C. H. Hallam. 1983. Land use and land cover digital data. Geological Survey Circular 895-E, US Geological Survey. Reston, VA.

    Google Scholar 

  • Flather, C. H., L. A, Joyce, and C. A. Bloomgarden. 1994. Species endangerment patterns in the United States. Gen. Tech. Rep. RM-241. USDA Forest Service. Rocky Mountain Forest and Range Experiment Station. 42 pp. Ft. Collins, CO.

  • Flather, C. H., S. J. Brady, and D.B. Inkley. 1992. Regional habitat appraisals of wildlife communities: a landscape-level evaluation of a resource planning model using avian distribution data. Landscape Ecology 7: 137–147.

    Article  Google Scholar 

  • Forman, R. T. T., and M. Godron. 1986. Landscape Ecology. Wiley. New York, USA.

    Google Scholar 

  • Franklin, J. F. 1993. The fundamentals of ecosystem management with application to the Pacific Northwest. Pp. 127–144 in: G. Aplet, J. T. Olson, N. Johnson, and V. A. Sample, eds. Defining sustainable forestry. Island Press, Wash., DC.

    Google Scholar 

  • Gardner, R. H., B. T. Milne, M. G. Turner, and R. V. O'Neill. 1987. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology 1: 19–28.

    Article  Google Scholar 

  • Green, J. C., and G. J. Niemi. 1980. Birds of the Superior National Forest. US Forest Service, Superior National Forest, Duluth, MN, USA.

    Google Scholar 

  • Gustafson, E. J., and G. R. Parker. 1992. Relationship between landcover proportion and indices of landscape spatial pattern. Landscape Ecology 7: 101–110.

    Article  Google Scholar 

  • Hansen, A. J., and D. L. Urban. 1992. Avian response patterns to landscape pattern: the role of species' life histories. Landscape Ecology 7: 163–180.

    Article  Google Scholar 

  • Harris, L. D. 1984. The fragmented forest: island biogeography theory and the preservation of biotic diversity. Univ. of Chicago Press. Chicago, IL.

    Google Scholar 

  • Hawrot, R. Y., and G. J. Niemi. Effects of edge type, patch shape, and patch size on avian communities in a mixed conifer-northern hardwood forest. The Auk: in press.

  • Heinselman, M. L. 1973. Fire in the virgin forests of the boundary waters canoe area, Minnesota. Quaternary Research 3: 329–382.

    Article  Google Scholar 

  • Hess, G. 1994. Pattern and process in landscape ecology: a commentary. Landscape Ecology 9: 3–5.

    Article  Google Scholar 

  • Hunsaker, C. T., R. V. O'Neill, B. L. Jackson, S. P. Timmins, D. A. Levine, and D. J. Norton. 1994. Sampling to characterize landscape pattern. Landscape Ecology 9: 207–226.

    Article  Google Scholar 

  • Iverson, L. R., E. A. Cook, and R. L. Graham. 1994. Regional forest cover estimation via remote sensing: the calibration center concept. Landscape Ecology 9: 159–174.

    Article  Google Scholar 

  • Iverson, L. R., R. L. Oliver, D. P. Tucker, P. G. Risser, C. D. Burnett, and R. G. Rayburn. 1989. The forest resources of Illinois: an atlas and analysis of spatial and temporal trends. Illinois Natural History Survey Special Publication 11. 181 pp. Champaign, IL.

  • Krummel, J. R., R. H. Gardner, G. Sugihara, R. V. O'Neill, and P. R. Coleman. 1987. Landscape patterns in a disturbed environment. Oikos 48: 321–324.

    Google Scholar 

  • Jelinksi, D. E., and J. Wu. 1996. The modifiable area unit problem and implications for landscape ecology. Landscape Ecology 11: 129–140.

    Google Scholar 

  • Lebart, L., A. Morineau, and K. M. Warwick. 1984. Multivariate descriptive statistical analysis. Wiley. NY, NY.

    Google Scholar 

  • Loveland, T. R., J. W. Merchant, D. O. Ohlen, and J. F. Brown. 1991. Development of a landcover characteristics database for the conterminous U.S. Photogrammetric Engineering and Remote Sensing 57: 1453–1463.

    Google Scholar 

  • Ludwig, J. A. and J. F. Reynolds. 1988. Statistical ecology. Wiley Interscience. NY, NY. 337pp.

    Google Scholar 

  • Mandelbrot, B. B. 1977. The fractal geometry of nature. W. H. Freeman, New York, New York, USA.

    Google Scholar 

  • Mladenoff, D. J., T. A. Sickley, R. G. Haight, and A. P. Wydeven. 1995. A regional analysis and prediction of favorable gray wolf habitat in the northern Great Lakes region. Conservation Biology 9: 279–294.

    Article  Google Scholar 

  • Mladenoff, D. J. and G. E. Host. 1994. Ecological perspective: Current and potential applications of remote sensing and GIS for ecosystem analysis. Pp. 219–242 in: Sample, V. A., ed. Remote sensing and GIS in ecosystem management. Island Press, Wash., DC.

    Google Scholar 

  • Mladenoff, D. J. and J. Pastor. 1993. Sustainable forest ecosystems in the northern hardwood and conifer region: Concepts and management. Pp. 145–180 in: G. Aplet, J. T. Olson, N. Johnson, and V. A. Sample, eds. Defining sustainable forestry. Island Press, Wash., DC.

    Google Scholar 

  • Mladenoff, D. J., M. A. White, J. Pastor, and T. R. Crow. 1993. Comparing spatial pattern in unaltered old-growth and disturbed forest landscapes. Ecological Applications 3: 294–306.

    Article  Google Scholar 

  • Moody, A., and C. E. Woodcock. 1994. Scale-dependent errors in the estimation of land-cover proportions: implications for global land-cover data sets. Photogrammetric Engineering and Remote Sensing 60: 585–594.

    Google Scholar 

  • Niemi, J. R., D. J. Mladenoff, and J. M. Hanowski, A. R. Lima, and M. A. White. Forest fragmentation and bird species distribution on roadside counts in Minnesota and Wisconsin. Submitted manuscript.

  • O'Neill, R. V., J. R. Krummel, R. H. Gardner, G. Sugihara, B. Jackson, D. L. DeAngelis, B. T. Milne, M. G. Turner, B. Zygmunt, S. W. Christensen, V. H. Dale, and R. L. Graham. 1988. Indices of landscape pattern. Landscape Ecology 1: 153–162.

    Article  Google Scholar 

  • Pastor, J. and D. J. Mladenoff. 1992. The Southern borealnorthern hardwood border. Pp. 216–240 in H. H. Shugart, R. Leemans, and G. B. Bonan, eds. A systems analysis of the global boreal forest. Cambridge University Press. Cambridge, UK.

    Google Scholar 

  • Ripple, W. J. 1994. Determining coniferous forest cover and forest fragmentation with NOAA-9 Advanced Very High Resolution Radiometer data. Photogrammetric Engineering and Remote Sensing 60: 533–540.

    Google Scholar 

  • Senft, R. L., M. B. Coughenour, D. W. Bailey, L. R. Rittenhouse, and O. E. Sala. 1987. Large herbivore foraging and ecological hierarchies. Bioscience 37: 789–799.

    Article  Google Scholar 

  • Shannon, C. E., and W. Weaver. 1962. The mathematical theory of communication. University of Illinois Press. Urbana, Illinois, USA.

    Google Scholar 

  • Turner, M. G. 1990. Spatial and temporal analysis of landscape patterns. Landscape Ecology 4:21–30.

    Google Scholar 

  • Turner, M. G. 1989. Landscape ecology: the effect of pattern on process. Annual Reviews of Ecology and Systematics 20: 171–197.

    Article  Google Scholar 

  • Turner, M. G., R. V. O'Neill, R. H. Gardner, and B. T. Milne. 1989a. Effect of changing spatial scale on the analysis of landscape pattern. Landscape Ecology 3:153–162.

    Article  Google Scholar 

  • Turner, M. G., V. H. Dale, and R. H. Gardner. 1989b. Predicting across scales: theory development and testing. Landscape Ecology 3: 245–252.

    Article  Google Scholar 

  • Turner, M. G. (ed.) 1987. Landscape heterogeneity and disturbance. Springer-Verlag. New York, NY.

    Google Scholar 

  • US Geological Survey. 1986. Land use and land cover digital data from 1:250,000 and 1:100,000 scale maps. Data user's guide 4. Reston, VA.

  • Wickham, J. D., R. V. O'Neill, K. H. Riitters, T. G. Wade, and K. B. Jones. 1996. Sensitivity of selected landscape pattern metrics to land-cover misclassification and differences in land-cover composition. Photogrammetric Engineering and Remote Sensing 62: in press.

  • Wickham, J. D., and K. H. Riitters. 1995. Sensitivity of landscape metrics to pixel size. International Journal of Remote Sensing 16: 3585–3594.

    Google Scholar 

  • Wolter, P. T., D. J. Mladenoff, G. E. Host, and T. R. Crow. 1995. Improved forest classification in the Lake States using multitemporal Landsat imagery. Photogrammetric Engineering and Remote Sensing 61: 1129–1143.

    Google Scholar 

  • Wolter, P. T., and D. J. Mladenoff. 1995. Improved forest cover classifications of northeastern Minnesota using multi-temporal Landsat data and National Wetlands Inventory data. Abstract. In proceedings 10th Annual Landscape Ecology Symposium. Minneapolis, MN. p. 183.

  • Zhu, Z., and D. L. Evans. 1994. U.S. forest types and predicted percent forest cover from AVHRR data. Photogrammetric Engineering and Remote Sensing 60: 525–5321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mladenoff, D.J., Niemi, G.J. & White, M.A. Effects of changing landscape pattern and U. S. G. S. land cover data variability on ecoregion discrimination across a forest-agriculture gradient. Landscape Ecology 12, 379–396 (1997). https://doi.org/10.1023/A:1007974800297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007974800297

Navigation