Skip to main content
Log in

Smart hydrogels for bioseparation

  • Published:
Bioseparation

Abstract

Smart hydrogels are hydrogels which alter their dimension (i.e., either swell or shrink) dramatically upon a small change in an environmental condition, such as temperature, pH, ionic strength, salt type, solvent, etc. Due to large changes in the swelling ratio, the smart hydrogels have been used widely in the separation of various molecules including proteins. Bioseparation using smart hydrogels is convenient, cost effective, and operable in mild conditions. The use of mild conditions during separation is critical for proteins which can be easily denatured or degraded. Smart hydrogels currently used in bioseparation and their limitations as well as improvements to be made are described here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badiger MV, Kulkarni MG and Mashelkar RA (1992) Concentration of macromolecules from aqueous solutions: a new swellex process. Chem. Eng. Sci. 47: 3–9.

    Article  CAS  Google Scholar 

  • Bae YH, Okano T and Kim SW (1991) "On-off" thermocontrol of solute transport. II. Solute release from thermosensitive hydrogels. Pharm. Res. 8: 624–628.

    Article  PubMed  CAS  Google Scholar 

  • Bala K and Vasudevan P (1982) pH-sensitive microcapsules for drug release. J. Pharm. Sci. 71: 960–962.

    PubMed  CAS  Google Scholar 

  • Brazel CS and Peppas NA (1996) Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(Nisopropylacrylamide-co-methacrylic acid) hydrogels. J. Controlled Release 39: 57–64.

    Article  CAS  Google Scholar 

  • Chen J (1997) Superporous hydrogels: synthesis and applications. Purdue University, Ph.D, Thesis.

  • Chun S-W and Kim J-D (1996) A novel hydrogel-dispersed composite membrane of poly(N-isopropylacrylamide) in a gelatin matrix and its thermally actuated permeation of 4-acetaminophen. J. Controlled Release 38: 39–47.

    Article  CAS  Google Scholar 

  • Cussler EL, Stokar MR and Varberg JE (1984) Gels as size selective extraction solvents. AIChE J. 30: 578–582.

    Article  CAS  Google Scholar 

  • Dinarvand R and D'Emanuele A (1995) The use of thermosensitive hydrogels for on-off release of molecules. J. Controlled Release 36: 221–227.

    Article  CAS  Google Scholar 

  • Dong L-C and Hoffman AS (1990) Synthesis and application of thermally reversible heterogels for drug delivery. J. Controlled Release 13: 21–31.

    Article  CAS  Google Scholar 

  • Dong L-C and Hoffman AS (1991) A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J. Controlled Release 15: 141–152.

    Article  CAS  Google Scholar 

  • Evens RP and Witcher M (1993) Biotechnology: an introduction to recombinant DNA technology and product availability. Ther. Drug Monit. 15: 514–520.

    PubMed  CAS  Google Scholar 

  • Feil H, Bae YH, Feijen J and Kim SW (1991) Molecular separation by thermosensitive hydrogel membranes. J.Memb. Sci. 64: 283–294.

    Article  CAS  Google Scholar 

  • Freitas RFS and Cussler EL (1987) Temperature sensitive gels as extraction solvents. Chem. Eng. Sci. 42: 97–103.

    Article  CAS  Google Scholar 

  • Galaev IY and Mattiasson B (1993) Thermoreactive water-soluble polymers, nonionic surfactants, and hydrogels as reagents in biotechnology. Enzyme Microb. Technol. 15: 354–366.

    Article  PubMed  CAS  Google Scholar 

  • Gelfi C, Orsi A, Leoncini F and Righetti PG (1995) Fluidified polyacrylamides as molecular sieves in capillary zone electrophoresis of DNA fragments. J. Chromatogr. A 689: 97–105.

    Article  CAS  Google Scholar 

  • Grossman PD (1994) Electrophoretic separation of DNA sequencing extension products using low-viscosity entangled polymer networks. J. Chromatogr. A 663: 219–227.

    Article  CAS  Google Scholar 

  • Han J, Park C-H and Ruan R (1995) Concentrating alkaline serine protease. subtilisin, using a temperature-sensitive hydrogel. Biotechnol. Lett. 17: 851–852.

    Article  CAS  Google Scholar 

  • Hirose Y, Amiya T, Hirokawa Y and Tanaka T (1987) Phase transition of submicron gel beads. Macromolecules 20: 1342–1344.

    CAS  Google Scholar 

  • Hu Z, Zhang X and Li Y (1995) Synthesis and applications of modulated polymer gels. Science 269: 525–527.

    CAS  PubMed  Google Scholar 

  • Huang X. Akehata T. Unno H and Hirasa O (1989) Dewatering of biological slurry by using water-absorbent polymer gel. Biotechnol. Bioeng. 34: 102–109.

    Article  CAS  PubMed  Google Scholar 

  • Huang X. Unno H, Akehata T and Hirasa O (1987) Analysis of kinetic behavior of temperature-sensitive water-absorbing hydrogel. J. Chem. Eng. Jpn. 20: 123–128.

    CAS  Google Scholar 

  • Jin MR, Wu CF, Lin PY and Hou W (1995) Swelling of and solute exclusion by poly(N-alkylacrylamide) gels. J. Appl. Polym. Sci. 56: 285–288.

    Article  CAS  Google Scholar 

  • Kabra BG, Akhtar MK and Gehrke SH (1992) Volume change kinetics of temperature-sensitive poly(vinyl methyl ether) gel. Polymer 33: 990–995.

    Article  CAS  Google Scholar 

  • Kajiwara K and Ross-Murphy SB (1992) Synthetic gels on the move. Nature 355: 208–209.

    Article  Google Scholar 

  • Kamath KR and Park K (1993) Biodegradable hydrogels in the drug delivery. Adv. Drug Delivery Rev. 11: 59–84.

    Article  CAS  Google Scholar 

  • Kanazawa H, Kashiwase Y, Yamamoto K, Matsushima Y, Kikuchi A, Sakurai Y and Okano T (1997) Temperature-responsive liquid chromatography. 2. Effects of hydrophobic groups in Nisopropylacrylamide copolymer-modified silica. Anal. Chem. 69: 823–830.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa H, Yamamoto K, Matsushima Y, Takai N, Kikuchi A, Sakurai Y and Okano T (1996) Temperature-responsive chromatography using poly(N-isopropylacrylamide)-modified silica. Anal. Chem. 68: 100–105.

    Article  CAS  Google Scholar 

  • Kishi R, Ichijo H and Hirasa O (1993) Thermo-responsive devices using poly(vinyl methyl ether) hydrogels. Journal of Intelligent Material Systems and Structures 4: 533–537.

    Google Scholar 

  • Kokufata E, Zhang Y-Q and Tanaka T (1991) Saccharide-sensitive phase transition of a lectin-loaded gel. Nature 351: 302–304.

    Article  CAS  Google Scholar 

  • Kwon IC, Bae YH and Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354: 291–293.

    Article  PubMed  CAS  Google Scholar 

  • Lee KK, Cussler EL, Marchetti M and McHugh MA (1990) Pressure-dependent phase transitions in hydrogels. Chem. Eng. Sci. 45: 766–767.

    Article  Google Scholar 

  • Mamada A, Tanaka T, Kungwachakun D and Irie M(1990) Photoinduced phase transition of gels. Macromolecules 23: 1517–1519.

    Article  CAS  Google Scholar 

  • Obaidat AA and Park K (1997) Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 18: 801–806.

    Article  PubMed  CAS  Google Scholar 

  • Osada Y, Okuzaki H and Hori H (1992) A polymer gel with electrically driven motility. Nature 355: 242–244.

    Article  CAS  Google Scholar 

  • Park C-H and Orozco-Avila I (1992) Concentrating cellulases from fermented broth using a temperature-sensitive hydrogel. Biotechnol. Prog. 8: 521–526.

    Article  CAS  Google Scholar 

  • Park H, Hwang SJ, Chen J and Park K (1997) Synthesis of superporous hydrogels as a platform for oral drug delivery. Pharm. Res. 14: S627.

    Google Scholar 

  • Park H and Park K (1994a) Honey, I blew up the hydrogels! Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 21: 21–22.

    Google Scholar 

  • Park H and Park K (1994b) Hydrogel forms: a new type of fast swelling hydrogels. Trans. Soc. Biomaterials 17: 158.

    Google Scholar 

  • Park JH, Park C-H and Chung IS (1997) Hydrogel ultrafiltration of recombinant alkaline phosphatase from baculovirus-infected Spodoptera frugipera. Biotechnol. Tech. 11: 191–193.

    Article  CAS  Google Scholar 

  • Park K, Chen J and Park H (submitted) Superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties. U.S. Patent application Serial No. 08/855,499

  • Park K, Shalaby WSW and Park H (1993) Biodegradable hydrogels for drug delivery. Technomic Publishing Co., Lancaster.

    Google Scholar 

  • Park TG and Hoffman AS (1993) Sodium chloride-induced phase transition in nonionic poly(N-isopropylacrylamide) gel. Macromolecules 26: 5045–5048.

    Article  CAS  Google Scholar 

  • Park TG and Hoffman AS (1993) Thermal cycling effects on the bioreactor performances of immobilized β-galactosidase in temperature-sensitive hydrogel beads. Enzyme Microb. Technol. 15: 476–482.

    Article  PubMed  CAS  Google Scholar 

  • Patton JS (1997) Deep-lung delivery of therapeutic proteins. CHEMTECH 27: 34–38.

    CAS  Google Scholar 

  • Peppas NA and Lustig SR (1986) Solute diffusion in hydrophilic network structures. In: Peppas NA (ed.), Hydrogels in Medicine and Pharmacy, (pp. 57–83) CRC Press, Boca Raton.

    Google Scholar 

  • Roepke DC, Goyal SM, Kelleher CJ, Halvorson DA, Abraham AJ, Freitas RF and Cussler EL (1987) Use of temperature-sensitive gel for concentration of influenza virus from infected allantoic fluids. J. Virol. Methods 15: 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Sassi AP, Shaw AJ, Han SM, Blanch HW and Prausnitz JM (1996a) Partitioning of proteins and small biomolecules in temperatureand pH-sensitive hydrogels. Polymer 37: 2151–2164.

    Article  CAS  Google Scholar 

  • Sassi AP, Barron A, Alonso-Amigo MG, Hion DY, Yu JS, Soane DS and Hooper HH (1996b) Electrophoresis of DNA in novel thermoreversible matrices. Electrophoresis 17: 1460–1469.

    Article  PubMed  CAS  Google Scholar 

  • Sawahata K, Hara M, Yasunaga H and Osada Y (1990) Electrically controlled drug delivery system using polyelectrolyte gels. J. Controlled Release 14: 253–262.

    Article  CAS  Google Scholar 

  • Shiroya T, Tamura N, Yasui M, Fujimoto K and Kawaguchi H (1995) Enzyme immobilization on thermosensitive hydrogel microspheres. Colloids Surf., B 4: 267–274.

    Article  CAS  Google Scholar 

  • Starodoubtsev SG. Khokhlov AR, Sokolov EL and Chu B (1995) Evidence for polyelectrolyte/ionomer behavior in the collapse of polycationic gels. Macromolecules 28: 3930–3936.

    Article  CAS  Google Scholar 

  • Sun Y, Li H, Liu P and Ha H (1991) Application of surface grafted poly N-isopropylacrylamide by radiation technology for protein solution concentration. Chin. J. Polym. Sci. 9: 353–357.

    Google Scholar 

  • Sun Y, Qiu Z and Hong Y (1992) Application of nonionic temperature sensitive hydrogel for concentration of protein aqueous solution. Chin. J. Polym. Sci. 10: 311–318.

    CAS  Google Scholar 

  • Suzuki A, Ishii T and Maruyama Y (1996a) Optical switching in polymer gels. J. Appl. Phys. 80: 131–136.

    Article  CAS  Google Scholar 

  • Suzuki A and Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346: 345–347.

    Article  CAS  Google Scholar 

  • Suzuki Y, Tomonaga K, Kumazaki M and Nishio I (1996b) Change in phase transition behavior of an NIPA gel induced by solvent composition: hydrophobic effect. Polymer Gels and Networks 4: 129–142.

    Article  CAS  Google Scholar 

  • Tanaka T (1981) Gels. Sci. Am 244: 124–138.

    CAS  Google Scholar 

  • Tanaka T and Fillmore DJ (1979) Kinetics of swelling of gels. J. Chem. Phys. 70: 1214–1218.

    Article  CAS  Google Scholar 

  • Tarcha PJ, Bindseil W and Chu VP (1989) Absorptionenhanced solid-phase immunoassay method via water-swellable poly(acrylamide) microparticles. J. Immunol. Methods 125: 243–249.

    Article  Google Scholar 

  • Trank SJ, Johnson DW and Cussler EL (1989) Isolated soy protein production using temperature-sensitive gels. Food Technol. 43: 78–83.

    CAS  Google Scholar 

  • Wang KL, Burban JH and Cussler EL (1993) Hydrogels as separation agents. Adv. Polym. Sci. 110: 67–79.

    Article  CAS  Google Scholar 

  • Wu XS, Hoffman AS and Yager P (1992) Synthesis and characterization of thermally reversible macroporous poly(Nisopropylacrylamide) hydrogels. J. Polym. Sci. Part A: Polymer Chem. 30: 2121–2129.

    Article  CAS  Google Scholar 

  • Yan Q and Hoffman AS (1995) Synthesis of macroporous hydrogels with rapid swelling and deswelling properties for delivery of macromolecules. Polymer 36: 887–889.

    Article  CAS  Google Scholar 

  • Yoshioka H, Mon Y and Tsuchida E (1994) Crosslinked poly(Nisopropylacrylamide) gel for electrophoretic separation and recovery of substances. Polym. Adv. Technol. 5: 221–224.

    Article  CAS  Google Scholar 

  • Zhang X, Li Y, Hu Z and Littler CL (1995) Bending of Nisopropylacrylamide gel under the influence of infrared light. J. Chem. Phys. 102: 551–555.

    Article  CAS  Google Scholar 

  • Zhong X, Wang Y-X and Wang S-C (1996) Pressure dependence of the volume phase-transition of temperature-sensitive gels. Chem. Eng. Sci. 51: 3235–3239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.J., Park, K. Smart hydrogels for bioseparation. Bioseparation 7, 177–184 (1998). https://doi.org/10.1023/A:1008050124949

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008050124949

Navigation