Skip to main content
Log in

Geochemical effects of rapid sedimentation in aquatic systems: minimal diagenesis and the preservation of historical metal signatures

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Rapid sedimentation exerts a pronounced influence on early sedimentary diagenesis in that there is insufficient time for a sediment particle to equilibrate in any one sediment layer before that layer may be displaced vertically by another layer. These sedimentation patterns are common in surface-water reservoirs whose sedimentation rates (1-10 cm yr-1) are several orders of magnitude greater than those for natural lakes (0.01-0.5 cm yr-1).

Two examples of the effects of rapid sedimentation on geochemical metal signatures are presented here. Interstitial-water data (Fe) from two sites in the Cheyenne River Embayment of Lake Oahe on the Missouri River illustrate the effects of changing sedimentation rates on dissolved species. Rapid burial during high-flow yrs appears to limit early sedimentary diagenesis to aerobic respiration. Solid-phase metal data (Pb) from a site in Pueblo Reservoir on the upper Arkansas River in Colorado appear to record historical releases by flooding of abandoned mine sites upstream in Leadville, Colorado. Interstitial-water ammonia and ferrous Fe data indicate that at least one interval at depth in the sediment where solid metal concentrations peak is a zone of minimal diagenesis.

The principal diagenetic reactions that occur in these sediments are aerobic respiration and the reduction of Mn and Fe oxides. Under slower sedimentation conditions, there is sufficient time for particulate organic matter to decompose and create a diagenetic environment where metal oxides may not be stable. The quasi-steady-state interstitial Fe profiles from Tidal Potomac River sediments are an example of such a situation. This occurs primarily because the residence time of particles in the surficial sediment column is long enough to allow benthic organisms and bacteria to perform their metabolic functions. When faster sedimentation prevails, there is less time for these metabolic reactions to occur since the organisms do not occupy a sediment layer for any length of time. Also, the quantity and quality of the organic matter input to the sediment layer is important in that reservoirs often receive more terrestrial organic matter than natural lakes and this terrestrial organic matter is generally more refractory than autochthonous aquatic organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berner, R. A., 1980. Early Diagenesis, a theoretical approach. Princeton University Press, Princeton, N.J., 241 pp.

    Google Scholar 

  • Boudreau, B. P., 1997. Diagenetic models and their implementation. Springer, New York, N.Y., 414 pp.

    Google Scholar 

  • Brush, G. S., E. A. Martin, R. S. DeFries & C. A. Rice, 1982. Comparison of 210Pb and Pollen methods for determining rates of estuarine sediment accumulation. Quat. Res. 18: 196–217.

    Google Scholar 

  • Callender, E., 1982. Benthic phosphorus regeneration in the Potomac River Estuary. Hydrobiologia 92: 431–446.

    Google Scholar 

  • Callender, E., V. Carter, D. C. Hahl, K. Hitt & B. I. Schultz, 1984. A water-quality study of the Tidal Potomac River and Estuary — an overview. U.S. Geol. Sur. Water-Supply Paper 2233, 46 pp.

  • Callender, E., W. H. Ficklin, B. A. Kimball & P. R. Edelmann, 1989. Heavy-metal geochemistry of sediments in the Pueblo Reservoir, Colorado. In Mallard, G. E. & S. E. Ragone (eds), U.S. Geological Survey Toxic Substances Hydrology Program, Proceed. Tech. Meeting, Phoenix, Arizona, 1988. U.S. Geol. Surv. Water-Resour. Invest. Rept. 88– 4220: 81–91.

  • Callender, E. & J. A. Robbins, 1993. Transport and accumulation of radionuclides and stable elements in a Missouri River reservoir. Wat. Resour. Res. 29: 1787–1804.

    Google Scholar 

  • Callender, E. & R. A. Smith, 1993. Deposition of organic carbon in upper Missouri River Reservoirs. Mitt. Geol. — Paleont. Inst. Univ. Hamburg Heft 74: 65–79.

    Google Scholar 

  • Callender, E. & P. C. Van Metre, 1997. Reservoir sediment cores show U.S. lead declines. Environ. Sci. Technol. 31: 424A– 428A.

  • Callender, E. & K. C. Rice, 1999. The urban environmental gradient: distributions of anthropogenic lead and zinc in sediments over space and time. Unpub. Manuscript.

  • Coleman, M. L., C. D. Curtis & H. Irwin, 1979. Burial rate, a key to source and reservoir potential. World Oil: 83–88.

  • Curtis, C. D., 1977. Sedimentary geochemistry: Environments and processes dominated by involvement of an aqueous phase. Phil. Trans. r. Soc. Lond. A286: 353–372.

    Google Scholar 

  • Curtis, C. D., 1983. Microorganisms and diagenesis of sediments. In Krumbein, W. E. (ed.), Microbial Geochemistry. Blackwell, London, England, 263–286.

    Google Scholar 

  • De Lange, G. J., 1986. Early diagenetic reactions in interbedded pelagic and turbiditic sediments in the Nares Abyssal Plain: Consequences of the composition of sediment and interstitial water. Geochim. Cosmochim. Acta 50: 2543–2561.

    Google Scholar 

  • Fergusson, J. E., 1990. The Heavy Elements: Chemistry, Environmental Impact, and Health Effects. Pergamon, Oxford, England, 614 pp.

    Google Scholar 

  • Flynn., W. W., 1968. The determination of low levels of polonium-210 in environmental materials. Analyt. Chim. Acta 43: 221–227.

    Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman & V. Maynard, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–1090.

    Google Scholar 

  • Glenn, J. L., 1988. Bottom sediments and nutrients in the Tidal Potomac system, Maryland and Virginia. U.S. Geol. Sur. Water-Supply Paper 2234F, 75 pp.

  • Goodwin, S. D., B. I. Schultz, D. L. Parkhurst, N. S. Simon & E. Callender, 1984. Methods for the collection of geochemical data from the sediments of the tidal Potomac River and Estuary, and data for 1978–1980. U.S. Geol. Surv. Open-File Rept. 84– 074, 129 pp.

  • Hadley, R. F. & S. A. Schumm, 1961. Sediment sources and drainage basin characteristics in the upper Cheyenne River Basin. U.S. Geol. Surv. Water-Supply Paper 1531B, 137–146.

    Google Scholar 

  • Hakanson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer-Velag, Berlin, Germany, 317 pp.

    Google Scholar 

  • Hem, J. D., 1985. Study and interpretation of the chemical characteristics of natural water. U.S. Geol. Sur. Water-Supply Paper 2254, 263 pp.

  • Johnson, T. C., 1984. Sedimentation in large lakes. Ann. Rev. Earth Planet. Sci. 12: 179–204.

    Google Scholar 

  • Kimball, B. A., E. Callender & E. V. Axtmann, 1995. Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, U.S.A. Appl. Geochem. 10: 285–306.

    Google Scholar 

  • Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservoir primary production. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. Wiley-Interscience, N.Y., 133–193.

    Google Scholar 

  • Krishnaswami, S. & D. Lal, 1978. Radionuclide limnochronology. In Lerman, A. (ed.), Lakes-Chemistry, Geology, Physics. Springer-Verlag, New York, N.Y., pp. 153–177.

    Google Scholar 

  • Larsen, I. L. & N. H. Cutshall, 1981. Direct determination of 7Be in sediments. Earth Planet. Sci. Lett. 54: 379–384.

    Google Scholar 

  • Lerman, A., 1979. Geochemical processes water and sediment environments. J. Wiley & Sons, N.Y., 481 pp.

    Google Scholar 

  • Lichte, F. E., D. W. Golightly & P. J. Lamothe, 1987. Inductively coupled plasma atomic emission spectrometry. In Baedecker, P. A. (ed.), Methods for Geochemical Analysis. U.S. Geol. Surv. Bulletin 1770: B1–B10.

  • Lynn, D. C. & E. Bonatti, 1965. Mobility of manganese in diagenesis of deep sea sediments. Mar. Geol. 3: 457–474.

    Google Scholar 

  • Martin, E. A. & C. A. Rice, 1981. Sampling and analyzing sediment cores for 210Pb geo-chronology. U.S. Geol. Sur. Open-File Rept. 81– 983, 30 pp.

  • Martin, J. M., P. Nirel & A. J. Thomas, 1987. Sequential extraction techniques: promises and problems. Mar. Chem. 22: 313–341.

    Google Scholar 

  • Ritchie, J. C., J. R. McHenry & A. C. Gill, 1973. Dating recent reservoir sediments. Limnol. Oceanogr. 18: 254–263.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell & M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844–851.

    Google Scholar 

  • Tourtelot, H. A., 1964. Minor element composition and organic carbon content of marine and nonmarine shales of Late Cretaceous age in the western interior of the United States. Geochim. Cosmochim. Acta 28: 1579–1604.

    Google Scholar 

  • Van Cappellen, P. & J. F. Gaillard, 1996. Biogeochemical dynamics in aquatic sediments. In Lichtner, P. C., C. I. Steefel & E. H. Oelkers (eds), Reactive Transport in Porous Media. Rev. in Mineralogy 34: 335–376.

  • Van Der Weijden, C. H., 1992. Early diagenesis in marine porewater. In Wolf, K. H. & G. V. Chilingarian (eds), Diagenesis, III. Elsevier, Amsterdam, Holland, pp. 13–134.

  • Wetzel, R. G., 1975. Limnology. W. B. Saunders, London, 741 pp.

    Google Scholar 

  • Wilson, T. R. S., J. Thompson, S. Colley, D. J. Hydes, N. C. Higgs & J. Sorensen, 1985. Early organic diagenesis: the significance of progressive subsurface oxidation fronts in pelagic sediments. Geochim. Cosmochim. Acta 49: 811–822.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callender, E. Geochemical effects of rapid sedimentation in aquatic systems: minimal diagenesis and the preservation of historical metal signatures. Journal of Paleolimnology 23, 243–260 (2000). https://doi.org/10.1023/A:1008114630756

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008114630756

Navigation