Skip to main content
Log in

Hydrogen production by microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The production of H2 gas from water and sunlightusing microalgae, `biophotolysis', has been a subjectof applied research since the early 1970s. A numberof approaches have been investigated, but most provedto have fundamental limitations or requireunpredictable research breakthroughs. Examples areprocesses based on nitrogen-fixing microalgae andthose producing H2 and O2 simultaneously fromwater (`direct biophotolysis'). The most plausibleprocesses for future applied R & D are those whichcouple separate stages of microalgal photosynthesisand fermentations (`indirect biophotolysis'). Theseinvolve fixation of CO2 into storagecarbohydrates followed by their conversion to H2by the reversible hydrogenase, both in dark andpossibly light-driven anaerobic metabolic processes. Based on a preliminary engineering and economicanalysis, biophotolysis processes must achieve closeto an overall 10% solar energy conversion efficiencyto be competitive with alternatives sources ofrenewable H2, such as photovoltaic-electrolysisprocesses. Such high solar conversion efficiencies inphotosynthetic CO2 fixation could be reached bygenetically reducing the number of light harvesting(antenna) chlorophylls and other pigments inmicroalgae. Similarly, greatly increased yields ofH2 from dark fermentation by microalgae could beobtained through application of the techniques ofmetabolic engineering. Another challenge is toscale-up biohydrogen processes with economicallyviable bioreactors.Solar energy driven microalgae processes forbiohydrogen production are potentially large-scale,but also involve long-term and economically high-riskR&D. In the nearer-term, it may be possible tocombine microalgal H2 production with wastewatertreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compoundsin a cyanobacterium, Spirulina platensis. J. Ferment. Bioengng 83: 17-20.

    Google Scholar 

  • Arnon DI, Mitsui A, Paneque A (1961) Photoreduction of hydrogen gas coupled with photosynthetic phosphorylation. Science 134: 1425.

    Google Scholar 

  • Benemann JR (1973) A Model System for nitrogen fixation and hydrogen evolution by non-heterocystous blue-green algae. Fed. Proc. 32: 632.

    Google Scholar 

  • Benemann JR (1977) Hydrogen and methane production through microbial photosynthesis. In Buvet R (ed.), Living Systems as Energy Converters. Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 285-298.

    Google Scholar 

  • Benemann JR (1990) The future of microalgae biotechnology. In Cresswell RC, Rees TAV, Shah N (eds), Algal Biotechnology, Longman, London: pp. 317-337.

    Google Scholar 

  • Benemann JR (1993) Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy Conserv. Mgmt. 34: 999-1004.

    Google Scholar 

  • Benemann JR (1994) Feasibility analysis of photobiological hydrogen production. In Block DL, Versiroglu TN (eds.), Hydrogen Energy Progress X, Proc. 10th World Hydrogen Energy Conf., Cocoa Beach, Florida, pp. 931-940.

  • Benemann JR (1996) Hydrogen biotechnology: Progress and prospects. Nature Biotech. 14: 1101-1103.

    Google Scholar 

  • Benemann JR (1998a) The technology of biohydrogen. In Zaborksy O (ed.) Biohydrogen, Plenum Press, pp. 19-30.

  • Benemann JR (1998b) Processes Analysis and Economics of Biophotolysis of Water. A Preliminary Assessment. Report to the International Energy Agency Hydrogen Program, Annex 10, Photoproduction of Hydrogen IEA/H2/10/TR-2-98.

  • Benemann JR, Berenson JA, Kaplan NO, Kamen MD (1973) Hydrogen evolution by a chloroplast-ferredoxin-hydrogenase system. Proc. Nat. Acad. Sci. USA 70: 2317-2320.

    Google Scholar 

  • Benemann JR, Weare NM (1974) Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science 184: 1917-1918.

    Google Scholar 

  • Benemann JR, Yoch DC, Valentine RC, Arnon DI (1969) The electron transport system in nitrogen fixation by Azotobacter. I. Azotoflavin as an electron carrier. Proc. Nat. Acad. Sci. USA 64: 1079-1086.

    Google Scholar 

  • Berenson JA, Benemann JR (1977) Immobilization of hydrogenase and ferrodoxins on glass beads. FEBS Letters 76: 105-107.

    Google Scholar 

  • Bishop NI (1966) Partial reactions of photosynthetsis and photoreduction. Ann. Rev. Plant Physiol., 17: 185-208.

    Google Scholar 

  • Block DL, Melody I (1992) Efficiency and cost goals for photoenhanced hydrogen production processes. Int. J. Hydrogen Energy 17: 853-861.

    Google Scholar 

  • Boichenko VA, Hoffman P (1994) Photosynthetic hydrogen production in Prokaryotes and Eukaryotes: Occurence, mechanism and functions. Photosynthetica 30: 527-552.

    Google Scholar 

  • Bolton JR (1996) Solar Photoproduction of Hydrogen. Report to the International Energy Agency, under Agreement on the Production and Utilization of Hydrogen IEA/H2/TR-96 September 1996.

  • Burlew D (1953) Algae Culture from Laboratory to Pilot Plant. Carnegie Institute of Washington, Washington D.C.

    Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J. gen. Physiol. 26: 219-240.

    Google Scholar 

  • Ghirardi ML, Togasaki RK, Seibert M (1997) Oxygen sensitivity of algal hydrogen production. Appl. Biochem. Biotech. 63-65: 141-151.

    Google Scholar 

  • Gibbs M, Hollaender A, Kok B, Krampitz LO, San Pietro A (1973) Proceedings of the Workshop on Bio Solar Hydrogen Conversion. September 5-6 1973, Bethesda Maryland.

  • Greenbaum, E (1988) Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys. J. 54: 365-368.

    Google Scholar 

  • Hallenbeck PC, Kochian LV, Weissman JC, Benemann JR (1978) Solar energy conversion with hydrogen producing cultures of the blue-green alga, Anabaen cylindrica. Biotech. Bioengng Symp. No. 8, 283-297.

  • Hallenbeck, PC, Benemann JR (1979) Hydrogen from algae. In Barber J (ed.) Photosynthesis in Relation to Model Systems. Elsevier/North-Holland Biomedical-Press, pp. 333-364.

  • Happe RP, Roseboom W, Plerik AJ, Albracht SPL, Bagley KA (1997) Biological activation of hydrogen. Nature 385: 126.

    Google Scholar 

  • Ikuta Y, Akano T, Shioji N, Maeda I (1998) Hydrogen Production by</del> Photosynthetic Microogranisms. In O. Zaborsky, ed., Biohydrogen, Plenum Press, New York, pp. 319-328.

    Google Scholar 

  • Jackson DD, Ellms JW (1896) On odors and tastes of surface waters with special reference to Anabaena, a microscopial organsim found in certain water supplies of Massachusetts, Rep. Mass. State Board Health 1896: 410-420.

    Google Scholar 

  • Keasling JD, Benemann JR, Pramanik J, Carrier TA, Jones KL, VanDien SJ (1998) A toolkit for metabolic engineering of bacteria: application to hydrogen production. In Zaborsky O (ed.), BioHydrogen, Plenum Press, pp. 87-98.

  • Kessler E (1974) Hydrogenase, photoreduction, and anaerobic growth. In Stewart WDP (ed.), Algal Physiology and Biochemistry. Blackwell, Oxford, pp. 456-473.

    Google Scholar 

  • Kok B (1973) Photosynthesis. I Gibbs M, (ed.), Proceeding of the Workshop on Bio Solar Hydrogen Conversion. September 5-6 1973, Bethesda Maryland, pp. 22-30.

  • Lambert GR, Smith GD (1981) The Hydrogen metabolism of cyanobacteria (blue-green algae). Biol. Rev. 56: 589-660.

    Google Scholar 

  • Markov SA, Bazin M, Hall DO (1995) The potential of using cyanobacteria in photobioreactors for hydrogen production. Adv. Biochem. Eng. 52: 59-86.

    Google Scholar 

  • McBride AC, Lien S, Togasaki RK, San Pietro A (1977) Mutational analysis of Chlamydomonas reinhardi: Application to biological eneragy conversion. In Mitsui A, Miyachi S, San Pietro A, Tamura S (eds), Biological Solar Energy Conversion, Academic Press, New York, pp. 77-86.

    Google Scholar 

  • McTavish H, Sayavedra-Soto LA, Arp DJ (1995) Substitution of Azotobacter vinelandii hydrogenase small subunit cysteins by serines can create insensitivity to inhibition by O2 and preferentially damages H2 oxidation over H2 evolution. J. Bact. 177: 3960-3964.

    Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim. Biophys. Acta (Reviews on Bioenergetics) 1058: 87-106.

    Google Scholar 

  • Melis A, Neidhardt J, Baroli I, Benemann JR (1998) Maximizing photosynthetic productivity and light utilization in microalgae by minimizing the light-harvesting chlorophyll antenna size of the photosystems. In Zaborsky O. (ed.) Biohydrogen Plenum Press, New York, pp. 41-52.

    Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use effeiciencies than normally pigmented cells. J. App. Phycol. 10: 515-525.

    Google Scholar 

  • Melis A, Zhang, L, Forestier M, Ghirardi ML, Seiber M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolutin in the green alga Chlamydomonas reinhardtii. J. Plant Physiol. 122: 127-135.

    Google Scholar 

  • Mitsui A (1992) Biological hydrogen photoproduction. In Proc. 1992 DOE/NREL Hydrogen Program Review, May 6-7 1992, Honolulu Hawaii, NREL/CP-450-4972, pp. 129-156.

  • Miyamoto K (1994) Hydrogen production by photosynthetic bacteria and microalgae. In Murooka Y, Imanaka T (eds.), Recombinant Microbes for Industrial and Agricultural Applications. Marcel Dekker, New York, pp. 771-786.

    Google Scholar 

  • Myers J (1957) Algal culture. Encyclopedia of Chemical Technology. Interscience, NY, pp. 649-680.

    Google Scholar 

  • Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigment. J. appl. Phycol. 9: 503-510.

    Google Scholar 

  • Nakajima Y, Ueda R (1999) Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment. J. appl. Phycol. 11: 195-201.

    Google Scholar 

  • Nakajima Y, Ueda R (2000) The effect of reducing light-harvesting pigment on marine microalgal productivity. J. appl. Phycol. 12: 285-290.

    Google Scholar 

  • Nandi R, Segupta S (1998) Microbial production of hydrogen: An overview. Critical Re. Microbiol. 24: 61-84.

    Google Scholar 

  • Neidhardt J, Benemann JR, Baroli I, Melis A (1998) Maximizing photosynthetic productivity and light utilization in microalgae by minimizing the light-harvesting chlorophyll antenna size of the photosystems. Photosynthesis Res. 56: 175-184.

    Google Scholar 

  • Oswald WJ, Goluek CG (1960) Biological Energy Conversion System. Adv. appl. Microbiol. 2: 223-232.

    Google Scholar 

  • Pauss A, Andre G, Perrier M, Guiot SR, (1990) Liquid-to-gas mass transfer in anaerobic processes: Inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl. environ. Microbiol. 56: 1636-1644.

    Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282: 1853-1858.

    Google Scholar 

  • Polle J, Kanakagiri S, Benemann JR, Melis A (2000), Maximizing photosynthetic efficiencies and hydrogen production in microalga cultures. In Miyake J, San Pietro A (eds), Biohydrogen 99.

  • Radway J, Yoza BA, Benemann JR, Chini-Zitelli G, Malda J, Babcock RW Jr., Tredici M, Zaborsky O (1999) Evaluation of a near-horizontal tubular photobioreactorsystem in Hawaii. (Abstract) In Algae and Human Affaris in the 21st Century 8th Int. Conf. on Applied Algology, 26 September to 1 October 1999, Motecatini Terme, Italy.

  • Sasikala K, Ramana ChV, Rao PR, Kovacs KL (1993) Anoxygenic phototrophic bacteria: physiology and advances in hydrogen technology. Adv. appl. Microbiol. 38: 211-295

    Google Scholar 

  • Schulz R (1996) Hydrogenases and hdrogen production in eucaryotic organisms and cyanobacteria. J. mar. Biotech. 4: 15-22.

    Google Scholar 

  • Spruit CJP (1958) Simultaneous photoproduction of hydrogen and oxygen byChlorella. Mededel. Landbouwhogeschool Wageningen 58: 1-17.

    Google Scholar 

  • Thauer R (1976) Limitation of microbial hydrogen formation via fermentation. In Schlegel HG and Barnea J (eds), Microbial Energy Conversion. Erich Goltze, Gottingen, Germany, pp. 201-294.

    Google Scholar 

  • Tredici MR, Zittelli GC, Benemann JR (1998) A tubular internal gas exchange hydrogen production: Preliminary cost analysis. In Zaborsky O (ed.), BioHydrogen. Plenum Press, New York, pp. 391-402.

    Google Scholar 

  • Turpin DH, Layzell DB, Elrifi IR (1985) Modeling the carbon economy of Anabaena flos-aquae. Plant Physiol. 78: 74-752.

    Google Scholar 

  • Ueno Y, Morimoto M, Ootsuka S, Kawai T, Satou S (1995) Process for the Production of Hydrogen by Microorganisms and for Wastewater Treatment. U.S. Patent, 5, 464, 539 (November, 7, 1995).

  • Weare NM, Benemann JR (1973) Nitrogen fixation by Anabaena cylindrica. I. Localization of nitrogen fixation in heterocysts. Arch. Microbiol. 90: 323-332.

    Google Scholar 

  • Weare NM, Benemann JR (1974). Nitrogenase activity and photosynthesis by Plectonema boryanum 594. J. Bacteriol. 119: 258-268.

    Google Scholar 

  • Weaver PF, Lien S, Seibert M (1980) Photobiological production of hydrogen. Solar Energy 24: 3-45.

    Google Scholar 

  • Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen-fixing cultures of Anabaena cylindrica. Appl. environ. Microbiol. 33: 123-131.

    Google Scholar 

  • Zaborsky O (ed.) (1988) Biohydrogen. Plenum Press New York.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benemann, J.R. Hydrogen production by microalgae. Journal of Applied Phycology 12, 291–300 (2000). https://doi.org/10.1023/A:1008175112704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008175112704

Navigation