Skip to main content
Log in

The chemical control of biofouling in industrial water systems

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Oxidising and non-oxidising biocides are commonly used in an attempt to control biofouling in industrial water systems. Many of these programmes, however, fail due to the incorrect selection and application of these chemical compounds. Knowledge of the organisms to be eliminated and system hydraulics are important operational parameters in ensuring the successful application of chemical control programmes. A further complicating factor is the build up of bacterial resistance to many of these compounds. One way of limiting resistance is the alteration of oxidising and non-oxidising biocides at the correct miminum inhibitory concentration and using these in combination with surface active compounds to dislodge any biofilm. A variety of surface monitoring techniques are in use in order to monitor the success of biofouling control programmes. Unfortunately none of these techniques are ideal and results have to be considered very carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair FW, Geftig SG & Gelzer J (1971) Resistance of Pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solutions. Appl. Microbiol. 21: 1058- 1063

    Google Scholar 

  • Albrich JM, McCarthy CA & Hurst JK (1981) Biological reactivity of hypochlorous acid. Implications for microbiocidal mechanisms of leukocyte myeloperoxidase. Proc. Natl. Acad. Sci. U. S. A. 78: 210- 214

    Google Scholar 

  • Allsop D & Seal KJ (1986) Introduction to Biodeterioration. Edward Arnold, London

    Google Scholar 

  • Anwar H, Shand GH, Ward KH, Brown MRV, Alpar KE & Gowar J (1985) Antibody response to acute Pseudomonas aeruginosa infection in a burn wound. FEMS Microbiol. Lett. 29: 225- 230

    Google Scholar 

  • Atlas RM & Bartha R (1987) Evolution and structure of microbial communities. In: Microbial Ecology: Fundamentals and Applications. 2nd ed. The Benjamin/Cummings Publishing Company, Menlo Park, California

    Google Scholar 

  • Attwood D & Florence AT (1983) Surfactant systems: their chemistry, pharmacy and biology. Chapman and Hall Ltd, London

    Google Scholar 

  • Barnes CP & Eagon RG (1986) The mechanism of action of hexahydro-1,3,5-triethyl-s-triazine. J. Ind. Microbiol. 1: 105- 112

    Google Scholar 

  • Broxton P, Woodcock PM, Heatley F & Gilbert P (1984) Interaction of some plyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J. Appl. Bacteriol. 57: 115- 124

    Google Scholar 

  • Brözel VS (1992) Bacterial resistance to certain nonoxidising water treatment bactericides. PhD Thesis, University of Pretoria, Pretoria, South Africa

    Google Scholar 

  • Brözel VS & Cloete TE (1991a) Fingerprinting of commercially available water treatment bactericides in South Africa. Water SA 17: 57- 66

    Google Scholar 

  • ____ (1991b) Resistance of bacteria from cooling waters to bactericides. J. Ind. Microbiol. 8: 273- 276

    Google Scholar 

  • ____ (992a) Evaluation of nutrient agars for the enumeration of viable aerobic heterotrophs in cooling water. Water Res. 26: 1111- 1117

    Google Scholar 

  • ____ (1992b) The effect of bactericide treatment on planktonic bacterial communities in water cooling systems. Water SA 18: 87- 92

    Google Scholar 

  • ____ (1993a) Adaptation of Pseudomonas aeruginosa to 2,2′-methylenebis( 4-chlorophenol). J. Appl. Bacteriol. 74: 94- 99

    Google Scholar 

  • ____ (1993b) Bacterial resistance to conventional water treatment biocides. CAB Biodeterioration Abstracts 7: 387- 395

    Google Scholar 

  • Caldwell DE & Lawrence JR (1989) Microbial growth and behaviour within surface microenvironments. In: Recent Advances in Microbial Ecology: Proceedings of the 5th International Symposium on Microbial Ecology (pp 140- 145)

  • Characklis WG (1990) Microbial biofouling control. In: Characklis WG & Marshall KC (Eds) Biofilms (pp 585- 633). John Wiley and Sons, New York

    Google Scholar 

  • Characklis WG, Trulear MG, Bryers JD & Zerver N (1982) Dynamics of biofilm processes. Methods. Water Res. 16: 1207- 1216

    Google Scholar 

  • Characklis WG & Cooksey KE (1983) Biofilms and microbial fouling. Adv. Appl Microbiol. 29: 93- 138

    Google Scholar 

  • Christensen BE & Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG & Marshall KC (Eds) Biofilms (pp 93- 130). John Wiley and Sons, New York

    Google Scholar 

  • Cloete TE, Brözel VS & Da Silva E (1993) Application of SterikonR bioindicators for the determination of bactericide concentrations. Water SA 19: 343- 345

    Google Scholar 

  • Cloete TE, Brözel VS & Pressly J (1989a) Bacterial population structure study of water cooling systems in South Africa. Water SA 15: 37- 42

    Google Scholar 

  • Cloete TE, Brözel VS & Von Holy A (1992) Practical aspects of biofouling control in industrial water system. Int. Biodeterioration and Biodegradation 29: 299- 341

    Google Scholar 

  • Cloete TE, Smith F & Steyn PL (1989b) The use of planktonic bacterial populations in open and closed recirculating water cooling systems for the evaluation of biocides. Int. Biodeterioration 25: 115- 122

    Google Scholar 

  • Collier PJ, Austin P & Gilbert P (1991) Isothiazolone biocides: enzymeinhibiting prodrugs. Int. J. Pharm. 74: 195- 206

    Google Scholar 

  • Collier PJ, Ramsey A, Austin P & Gilbert P (1990a) Growth inhibitory and biocidal activity of some isothiazolone biocides. J. Appl. Bacteriol. 69: 569- 577

    Google Scholar 

  • Collier PJ, Ramsey A, Waigh RD, Douglas KT, Austin P & Gilbert P (1990b) Chemical reactivity of some isothiazolone biocides. J. Appl. Bacteriol. 69: 578- 584

    Google Scholar 

  • Colturi TF & Kozelski KJ (1984) Corrosion and biofouling control in a cooling tower system. Material Performance August: 43- 47

  • Costerton JW & Lappin-Scott HM (1989) Behaviour of bacteria in biofilms. ASM NEWS 55: 650- 654

    Google Scholar 

  • Costerton JW & Lashen ES (1983) The inherent biocide resistance of corrosion-causing biofilm bacteria. Corrosion '83, National Association of Corrosion Engineers, Anaheim, April 18- 22, Paper number 246

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasyupta M & Marrie TJ (1987) Bacterial biofilms in nature and disease. Appl. Rev. Microbial. 41: 435- 464

    Google Scholar 

  • Dawood Z & Brözel VS (1997) Corrosion-enhancing potential of Shewanella putrefaciens isolated from industrial cooling waters. J. Appl. Microbiol. (In press)

  • De Bruyn EE (1992) Microbial ecology of sulphide producing bacteria in water cooling systems. MSc thesis, University of Pretoria, Pretoria, South Africa

    Google Scholar 

  • Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends in Biotechnology 10: 208- 216

    Google Scholar 

  • Fitzgerald KA, Davies A & Russell AD (1992) Bacterial uptake of 14C-chlorhexidine diacetate and 14C-benzyl alcohol and the influence of phenoxyethanol and azolectin: studies with Gram-negative bacteria. Microbios 70: 77- 91

    Google Scholar 

  • Ford T & Mitchell R (1990) The ecology of microbial corrosion. Adv. Microbiol. Ecol. 11: 231- 262

    Google Scholar 

  • Franklin TJ & Snow GA (1981) Biochemistry of Antimicrobial Action. 3rd ed. Chapman & Hall, London

    Google Scholar 

  • Freedman L (1979) Using chemicals for biological control in cooling water systems, some practical considerations. Industrial Water Engineering 16(5): 14- 17

    Google Scholar 

  • Gaylarde CC (1990) Advances in detection of microbiologically induced corrosion. Int. Biodeterioration 26: 11- 32

    Google Scholar 

  • Gilbert P & Brown MRW (1978) Influence of growth rate and nutrient limitation on the gross cellular composition of Pseudomonas aeruginosa and its resistance to 3-and 4-chlorolphenol. J. Bacteriol. 133: 1066- 1072

    Google Scholar 

  • Gilbert P & Wright N (1987) Non-plasmidic resistance towards preservatives of pharmaceutical products. In: Board RG, Allwood MC & Banks JG (Eds) Preservatives in the Food, Pharmaceutical and Environmental Industries (pp 255- 279). Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Hall BG (1990) Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126: 5- 16

    Google Scholar 

  • Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39: 195- 217

    Google Scholar 

  • Hart RA, Hughes DH, Templet HP & Whitaker JM (1990) Iron deposition and the effect of water treatment in mitigating suspected MIC failure of 304 stainless steel. In: Doulin N, Mittleman M & Danko J (Eds) Microbially Influenced Corrosion and Biodeterioration (pp 6- 69). Knoxville, Tennessee, October 7- 12

  • Heinzel M (1988) The phenomena of resistance of disinfectants and preservatives. In: Payne KR (Ed) Industrial Biocides (pp 52- 67). John Wiley and Sons, Chichester

    Google Scholar 

  • Hill EC, Hill GC & Robbins DA (1989) An informative practical strategy for preventing spoilage and improving preservation using a simple assay for biocides and preservatives. Int. Biodeterioration 25: 245- 252

    Google Scholar 

  • Hoppe HG (1984) Attachment of bacteria: advantage or disadvantage for survival in the aquatic environment. In: Marshall KC (Ed) Microbial Adhesion and Aggregation (pp 283- 301). SpringerVerlag, Berlin

    Google Scholar 

  • Iverson WP (1987) Microbial corrosion ofmetals. Adv. Appl. Microbiol. 32: 1- 36

    Google Scholar 

  • Jacobs L (1996) Anionic and nonionic surfactants, used for controlling the attachment of Pseudomonas aeruginosa to glass and 3CR12 metal surfaces. MSc thesis, University of Pretoria, Pretoria, South Africa

    Google Scholar 

  • Jones MV, Herd TM & Christie HJ (1989) Resistance of Pseudomonas aeruginosa to amphoteric and quaternary ammonium biocides. Microbios. 58: 49- 61

    Google Scholar 

  • Karsa DR (1992) Industrial application of surfactants. Redwood Press Ltd, England

    Google Scholar 

  • Lawrence JR, Delaquis DJ, Korber DR & Caldwell DE (1989) Behaviour of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Microb. Ecol. 14: 1- 14

    Google Scholar 

  • Lee W, Lewandowski Z, Nielsen PH & Hamilton WA (1995) Role of sulphate-reducing bacteria in corrosion of mild steel - a review. Biofouling 8: 165- 194

    Google Scholar 

  • Mansfeld F & Little B (1990) A critical review of the application of electrochemical techniques to the study of MIC. In: Proceedings of the International Water Conference, Pittsburg, U. S. A.

  • McCoy WF, Bryers JD, Robbins J & Costerton JW (1981) Observations of fouling biofilm formation. Can. J. Microbiol. 27: 910- 917

    Google Scholar 

  • Nikaido H & Vaara M (1987) Outer membrane. In: Neidhardt FC, Ingraham JL, Low K, Magasanik B, Schaechter M & Umbarger HE (Eds) Cellular and Molecular Biology (pp 7- 22). Vol. 1. American Society for Microbiology, Washington D. C.

    Google Scholar 

  • Parr JA (1990) Industrial biocide formulation - the way forward. Int. Biodeterioration 26: 237- 244

    Google Scholar 

  • Payne KR (1988) Industrial Biocides. John Wiley and Sons, Chichester

    Google Scholar 

  • Pedersen K (1982) Method for studying microbial biofilms in flowing-water systems. Appl. Microbial. 43: 6- 13

    Google Scholar 

  • Pietersen B, Brözel VS & Cloete TE (1995) The reaction of bacterial cultures to oxidising water treatment bactericides. Water SA 21: 173- 176

    Google Scholar 

  • Poulton WIJ (1993) Monitoring and control of biofouling in power utility open recirculating cooling water systems. MSc thesis, University of Pretoria, Pretoria, South Africa

    Google Scholar 

  • Poulton WIJ & Nixon M (1990) Microbial corrosion at Eskom. Presented at Microbial Corrosion Problems in the South African Industry, Indaba Conference Centre, Johannesburg, 18 Sept

  • Richards RME & Cavill RH (1980) Electron microscope study of the effect of benzalkonium, chlorhexidine and polymyxin on Pseudomonas cepacia. Microbios. 29: 23- 31

    Google Scholar 

  • Rossmoore HW & Sondossi M (1988) Applications and mode of action of formaldehyde condensate biocides. Adv. Appl. Microbiol. 33: 223- 275

    Google Scholar 

  • Russell AD (1990) Mechanisms of bacterial resistance to biocides. Int. Biodeterioration 26: 101- 110

    Google Scholar 

  • Russel AD & Chopr I (1990) Understanding Antibacterial Action and Resistance. Ellis Horwood, New York

    Google Scholar 

  • Russel AD, Furr RJ & Maillard JY (1997) Microbial susceptibility and resistance to biocides. ASM News. 63: 481- 487

    Google Scholar 

  • Sakagami Y, Yokohama H, Nishimura H, Ose Y & Tashima T (1989a) Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 55: 2036- 2040

    Google Scholar 

  • ____ (1989b) The mechanism of resistance of Pseudomonas aeruginosa to chlorhexidine digluconate. J. Antibact. Antifung. Agents. 17: 153- 160

    Google Scholar 

  • Sasatsu M, Shibata Y, Noguchi N & Kono M (1992) High-level resistance to ethidium bromide and antiseptics in Staphylococcus aureus. FEMS Microbiol. Lett. 93: 109- 114

    Google Scholar 

  • Savage DC & Fletcher M (1985) Bacterial adhesion. Plenum Press, New York

    Google Scholar 

  • Sondossi M, Rossmoore HW & Wireman JW (1986) The effect of fifteen biocides on formaldehyderesistant strains of Pseudomonas aeruginosa. J. Ind. Microbiol. 1: 87- 96

    Google Scholar 

  • Strauss SD & Puckarius DR (1984) Cooling water treatment for control of scaling, fouling, corrosion. Power, June

  • Stryer L (1981) Biochemistry. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Summers AO (1986) Organisation, expression and evolution of genes for mercury resistance. Ann. Rev. Microbiol. 40: 607- 643

    Google Scholar 

  • Tamachkiarowa A & Flemming HC (1996) Glass fiber sensor for biofouling monitoring. In: Proceedings of the 10th International Biodeterioration and Biodegradation Symposium, DECHEME Monographs Vol. 133, VCH Verlagsgesellschaft, Hamburg

    Google Scholar 

  • Tatnall RE & Horacek GL (1990) New perspectives on testing for sulphate reducing bacteria. In: Dowling N, Mittleman M & Danko J (Eds) Microbially Influenced Corrosion and Biodeterioration. Knoxville, Tennessee

  • Young-Bandala L & Boho MJ (1987) An innovativemethod formonitoring microbiological deposits in pulp and paper mills. TAPPI J. 70(1): 68- 71

    Google Scholar 

  • Wainwright M (1988) Structure and biology of bacteria relevant to the action of disinfectants. In: Payne KR (Ed) Industrial Biocides (pp 52- 67). John Wiley & Sons, Chichester

    Google Scholar 

  • Wallhäuß er KH (1995) Praxis der Sterilisation, Desinfektion - Konservierung: Keimidentifizierung - Betriebshygiene (5th edn.). Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Wolfaardt GM, Archibald REM & Cloete TE (1991) The use of DAPI in the quantification of sessile bacteria on submerged surfaces. Biofouling 4: 265- 274

    Google Scholar 

  • Woodcock PM (1988) Biguanides as industrial biocides. In: Payne KR (Ed) Industrial Biocides. John Wiley and Sons, Chichester

    Google Scholar 

  • Wolfaardt GM, Lawrence JR, Headley JV, Robarts RD & Caldwell DE (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb. Ecol. 27: 278- 291

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cloete, T., Jacobs, L. & Brözel, V. The chemical control of biofouling in industrial water systems. Biodegradation 9, 23–37 (1998). https://doi.org/10.1023/A:1008216209206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008216209206

Navigation