Skip to main content
Log in

Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the dynamical behavior of a microcantilever-sample system that forms the basis for the operation of atomic force microscopes (AFM). We model the microcantilever by a single mode approximation. The interaction between the sample and the cantilever is modeled by a Lennard--Jones potential which consists of a short-range repulsive potential and a long-range van der Waals (vdW) attractive potential. We analyze the dynamics of the cantilever sample system when the cantilever is subjected to a sinusoidal forcing. Using the Melnikov method, the region in the space of physical parameters where chaotic motion is present is determined. In addition, using a proportional and derivative controller, we compute the Melnikov function in terms of the parameters of the controller. Using this relation, controllers can be designed to selectively change the regime of dynamical interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Binnig, G., Quate, C. F., and Gerber, C., 'Atomic force microscope', Physical Review Letters 56(9), 1986, 930–933.

    Google Scholar 

  2. Strausser, Y. E., Schroth, M., and Sweeney III, J. J., 'Characterization of the low-pressure chemical vapor deposition grown rugged polysilicon surface using atomic force microscopy', Journal of Vaccum Science and Technology A 15(3), 1997, 1007–1013.

    Google Scholar 

  3. Zhong, Q., Inniss, D., Kjoller, K., and Elings, V. B., 'Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy', Surface Science 290(1–2), 1993, L688–L692.

    Google Scholar 

  4. Hoh, J. H., Lal, R., John, S. A., Revel, J. P., et al., 'Atomic force microscopy and dissection of gap junctions', Science 253, 1991, 1405–1408.

    Google Scholar 

  5. Kasas, S., Thomson, N. H., Smith, B. L., Hansma, H. G., et al., 'Escherichia coli rna polymerase activity observed using atomic force microscopy', Biochemistry 36(3), 1997, 461–468.

    Google Scholar 

  6. Williams, C. C. and Wickramasinghe, H. K., 'High resolution thermal microscopy', in IEEE 1986 Ultrasonics Symposium Proceedings, Vol. 1, B. R. McAvoy (ed.), IEEE, New York, 1986, pp. 393–397.

    Google Scholar 

  7. Babcock, K., Dugas, M., Manalis, S., and Elings, V., 'Magnetic force microscopy: Recent advances and applications', in Evolution of Thin Film and Surface Structure and Morphology Symposium, Materials Research Society, B. G. Demczyk, E. E. Garfunkel, B. M. Clemens, E. D. Williams, et al. (eds.), 1995, pp. 311–322.

  8. Grutter, P., Rugar, D., and Mamin, H. J., 'Magnetic force microscopy of magnetic materials', Ultramicroscopy 47(4), 1992, 393–399.

    Google Scholar 

  9. Terris, B. D., Stern, J. E., Rugar, D., and Mamin, H. J., 'Localized charge force microscopy', Journal of Vaccum Science and Technology 8(1), 1990, 374–377.

    Google Scholar 

  10. Slinkman, J. A., Williams, C. C., Abraham, D. W., and Wickramasinghe, H. K., 'Lateral dopant profiling mos structures on a 100 nm scale using scanning capacitance microscopy', in International Electron Devices Meeting 1990, Technical Digest, San Francisco, CA, December, 1990, pp. 73–76.

  11. Sarid, D., Scanning Force Microscopy, Oxford University Press, New York, 1994.

    Google Scholar 

  12. Ashhab, M., Salapaka, M. V., Dahleh, M., and Mezić, I., 'Control of chaos in atomic force microscopes', in American Control Conference, Albuquerque, New Mexico, June, 1997, pp. 192–202.

    Google Scholar 

  13. Burnham, N. A., Kulik, A. J., Gremaud, G., and Briggs, G. A. D., 'Nanosubharmonics: The dynamics of small nonlinear contacts', Physical Review Letters 74, 1995, 5059–5092.

    Google Scholar 

  14. Cleveland, J. P., 'Measuring and understanding forces on atomic length scales with the atomic force microscope', Ph.D. Dissertation, University of California at Santa Barbara, 1995.

  15. Walters, D. A., Cleveland, J. P., Thomson, N. H., Hansma, P. K., et al., 'Short cantilevers for atomic force microscopy', Review of Scientific Instruments 67(10), 1996, 3583–3590.

    Google Scholar 

  16. Hutter, J. L. and Bechhoefer, J., 'Calibration of atomic-force microscope tips', Review of Scientific Instruments 64(7), 1993, 1868–1873.

    Google Scholar 

  17. Salapaka, M. V., Bergh, H. S., Lai, J., Majumdar, A., and McFarland, E., 'Multimode noise analysis of cantilevers for scanning probe microscopy', Journal of Applied Physics 81(6), 1997, 2480–2487.

    Google Scholar 

  18. Israelachvili, J. N., Intermolecular and Surface Forces, Academic Press, Boston, MA, 1985.

    Google Scholar 

  19. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, Berlin, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashhab, M., Salapaka, M.V., Dahleh, M. et al. Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy. Nonlinear Dynamics 20, 197–220 (1999). https://doi.org/10.1023/A:1008342408448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008342408448

Navigation