Skip to main content
Log in

Enlargement of Monotone Operators with Applications to Variational Inequalities

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

Given a point-to-set operator T, we introduce the operator Tε defined as Tε(x)= {u: 〈 u − v, x − y 〉 ≥ −ε for all y ɛ Rn, v ɛ T(y)}. When T is maximal monotone Tε inherits most properties of the ε-subdifferential, e.g. it is bounded on bounded sets, Tε(x) contains the image through T of a sufficiently small ball around x, etc. We prove these and other relevant properties of Tε, and apply it to generate an inexact proximal point method with generalized distances for variational inequalities, whose subproblems consist of solving problems of the form 0 ɛ Hε(x), while the subproblems of the exact method are of the form 0 ɛ H(x). If εk is the coefficient used in the kth iteration and the εk's are summable, then the sequence generated by the inexact algorithm is still convergent to a solution of the original problem. If the original operator is well behaved enough, then the solution set of each subproblem contains a ball around the exact solution, and so each subproblem can be finitely solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alber, Ya. I.: On the regularization method for variational inequalities with nonsmooth unbounded operators in a Banach space, Appl. Math. Lett. 6(4) (1993), 63–68.

    Google Scholar 

  2. Brézis, H.: Opérateurs monotones maximaux et semigroups de contractions dans les espaces de Hilbert, Math. Studies 5, North-Holland, New York, 1973.

  3. Bregman, L. M.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming, U.S.S.R. Comput. Math. and Math. Phys. 7(3) (1967), 200–217.

    Google Scholar 

  4. Burachik, R. S. and Iusem, A. N.: A generalized proximal point algorithm for the variational inequality problem in a Hilbert space, SIAM J. Optim. (to appear).

  5. Censor, Y., Iusem, A. N. and Zenios, S. A.: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators (submitted for publication).

  6. De Pierro, A. R. and Iusem, A. N.: A relaxed version of Bregman's method for convex programming, J. Optim. Theory Appl. 51 (1986), 421–440.

    Google Scholar 

  7. Ermol'ev, Yu. M.: On the method of generalized stochastic gradients and quasi-Fejér sequences, Cybernetics 5 (1969), 208–220.

    Google Scholar 

  8. Hiriart-Urruty, J.-B. and Lemarechal, C.: Convex Analysis and Minimization Algorithms, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  9. Iusem, A. N.: An iterative algorithm for the variational inequality problem, Comput. Appl. Math. 13 (1994), 103–114.

    Google Scholar 

  10. Iusem, A. N., Svaiter, B. F. and Teboulle, M.: Entropy-like proximal methods in convex programming, Math. Oper. Res. 19 (1994), 790–814.

    Google Scholar 

  11. Iusem, A. N.: On some properties of paramonotone operators (submitted for publication).

  12. Kabbadj, S.: Méthodes proximales entropiques, Thesis in Mathematics, Université de Montpellier, France, 1994.

    Google Scholar 

  13. Kiwiel, K. C.: Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Math. 1133, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  14. Kiwiel, K. C.: Proximal minimization methods with generalized Bregman functions, SIAM J. Control and Optim. (to appear).

  15. Korpelevich, G. M.: The extragradient method for finding saddle points and other problems, Ekonom. Mat. Metody 12 (1976), 747–756.

    Google Scholar 

  16. Lemaire, B.: Bounded diagonally stationary sequences in convex optimization, J. Convex Anal. 1 (1994), 75–86.

    Google Scholar 

  17. Lemaire, B.: On the convergence of some iterative methods in convex analysis, In Lecture Notes in Econom. and Math. Systems 129, Springer-Verlag, Berlin, 1995, pp. 252–268.

    Google Scholar 

  18. Liskovets, O. A.: Regularization of problems with discontinuous monotone, arbitrarily perturbed operators, Soviet Math., Dokl. 28 (1983), 324–327.

    Google Scholar 

  19. Liskovets, O. A.: Discrete regularization of problems with arbitrarily perturbed monotone operators, Soviet Math. Dokl. 34 (1987), 198–201.

    Google Scholar 

  20. Martinet, B.: Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thésed'Etát, Université de Grenoble, France, 1972.

    Google Scholar 

  21. Rockafellar, R. T.: Local boundedness of nonlinear monotone operators, Michigan Math. J. 16 (1969), 397–407.

    Google Scholar 

  22. Rockafellar, R. T.: Monotone operators and the proximal point algorithm, SIAM J. Control and Optimization 14 (1976), 877–898.

    Google Scholar 

  23. Zeidler, E.: Functional Analysis and Its Applications, Part II/B (Nonlinear Monotone Operators), Springer-Verlag, Berlin, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burachik, R.S., Iusem, A.N. & Svaiter, B.F. Enlargement of Monotone Operators with Applications to Variational Inequalities. Set-Valued Analysis 5, 159–180 (1997). https://doi.org/10.1023/A:1008615624787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008615624787

Navigation