Skip to main content
Log in

Automatic Differentiation and Interval Arithmetic for Estimation of Disequilibrium Models

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Nonlinear estimation problems have a unknown number of stationary points. Interval arithmetic is a promising method that eliminates all but the global optimum. Automatic differentiation provides users with a convenient method of computing the gradient and Hessian of nonlinear functions. These two can be combined to provide an efficient and convenient global optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishof C., Carle, A., Khademi, P. and Mauer, A. (1995). The adifor 2.0 system for the automatic differentiation of fortran 77 programs, May. Preprint MCS-P481-1194, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 Cass Ave., Argonne, IL 60439.

    Google Scholar 

  • Bishof, C., Jones, W., Samareh-Abolhassani, J. and Mauer, A. (1996). Experiences with the application of the adic automatic differentiation tool to the cscmdo 3-d volume grid generation code, Jan. AIAA 96-0716, 34th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics.

  • Brown, Stephen J. (1993). Nonlinear systems estimation: Asset pricing model application. In Hal R. Varian (ed.), Economic and Financial Modeling with Mathematica, 286-299. Springer-Verlag, New York.

    Google Scholar 

  • Burden, R.L. and Faires, J.D. (1985). Numerical Analysis. Prindle, Weber and Schmidt, Boston, 3rd edn.

    Google Scholar 

  • Corliss, George C. (1988). Application of differentiation arithmetic. In Ramon E. Moore (ed.), Reliability in Computing, Volume 19 of Perspectives in Computing, 127-148. Academic Press, Boston.

    Google Scholar 

  • Dobmann, M., Liepelt, M. and Schittkowski, K. (1995). Algorithm 746: Pcomp: A fortran code for automatic differentiation. ACM Transactions on Mathematical Software, 21(3), 233-266, September.

    Google Scholar 

  • Dorsey, R.E. and Mayer, W.J. (1995). Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. Journal of Business and Economic Statistics, 13(1), 53-66.

    Google Scholar 

  • Fair, R.C. and Jaffee, D.M. (1972). Methods of estimation for markets in disequilibrium. Econometrica, 40, 497-514.

    Google Scholar 

  • Goffe, G.D., Ferrier, W.L. and Rogers, J. (1992). Simulated annealing: An initial application in econometrics. Computer Science in Economics and Management, 5, 133-146.

    Google Scholar 

  • Griewank, A., Juedes, D., Srinivasan, J. and Tyner, C. (1995). Adol-c, a package for the automatic differentiation of algorithms written in c/c + +. Preprint MCS-P-180-1190, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 Cass Ave., Argonne, IL 60439.

    Google Scholar 

  • Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1993). Numerical Toolbox for Verified Computing I. Springer-Verlag, Berlin.

    Google Scholar 

  • Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1995), C + + Toolbox for Verified Computing: Basic Numerical Problems. Springer-Verlag, Berlin.

    Google Scholar 

  • Hansen, E.R. (1992). Global Optimization Using Interval Analysis. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Heck, André (1993). Introduction to Maple. Springer-Verlag, New York.

    Google Scholar 

  • Iri, Masao (1991). History of automatic differentiation and rounding error estimation. In Andreas Griewank and George Corliss (eds.), Automatic Differentiation of Algorithms: Theory, Implementation, and Application, 3-16, Philadelphia, SIAM.

    Google Scholar 

  • Iri, Masao and Kubota, K. (1987). Methods of fast automatic differentiation and applications. Research Memorandum RMI 87-02, Department of Mathematical Engineering and Information Physics, Facility of Engineering.

  • Jerrell, Max E. (1989) Automatic differentiation in almost any language. ACM Signum Newsletter, 24, 2-8.

    Google Scholar 

  • Jerrell, Max E. (1990). Automatic differentiation using C + +. Journal of Object Oriented Programming, 3(1), 17-23.

    Google Scholar 

  • Jerrell, Max E. (1994). Global optimization using interval arithmetic. Computational Economics, 7, 55-62.

    Google Scholar 

  • Judge, G.G., Hill, R.C., Griffiths, W.E., Lütkepohl, H. and Lee, T. (1982). Introduction to the Theory and Practice of Econometrics. John Wiley and Sons, New York.

    Google Scholar 

  • Kagiwada, H., Kalaba, R., Rasakhoo, N. and Spingarn, K. (1986). Numerical Derivatives and Non-linear Analysis. Plenum Press, New York.

    Google Scholar 

  • Kalaba, R., Plum, T. and Tesfatsion, L. (1987). Automation of nested matrix and derivative operations. Applied Mathematics and Computation, 23, 243-268.

    Google Scholar 

  • Kalaba, R., Rasakhoo, N. and Tishler, A. (1983). Nonlinear least squares via automatic differentiation. Applied Mathematics and Computation, 12, 119-137.

    Google Scholar 

  • Kalaba, R. and Tishler, A. (1984). Automatic derivative evaluation in the optimization of nonlinear models. Review of Economics and Statistics, 66, 119-137.

    Google Scholar 

  • Kearfott, R.B. (1995). Intlib_arithmetic: A Fortran 90 module for an interval data type. submitted to ACM Transactions on Mathematical Software.

  • Kearfott, R.B., Dawande, M., Du, K.S. and Hu, C.Y. (1994). Algorithm 737: Intlib: A portable Fortran 77 interval standard library. ACM Transactions on Mathematical Software, 20(4), 447-458.

    Google Scholar 

  • Maddala, G.S. (1983). Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Maddala, G.S. and Nelson, F.D. (1974). Maximum likelihood methods for models of markets in disequilibrium. Econometrica, 42(6), 1013-1030.

    Google Scholar 

  • Moore, R.E. (1965). The automatic analysis and control of error in digital computation based on the use of interval numbers. In L.B. Rall (ed.), Errors in Digital Computation, 1, 61-130. Wiley, New York.

    Google Scholar 

  • Moore, R.E. (1966). Interval Analysis. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Moore, R.E. (1994). Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vettering, W.T. and Flannery, B.P. Numerical Recipes in C — The Art of Scientific Computing. Cambridge University Press, Cambridge, 2nd edn.

  • Rall, L.B. (1969). Compuational Solution of Nonlinear Operator Equations. John Wiley and Sons, New York.

    Google Scholar 

  • Ratschek, H. and Rokne, J. (1988). New Computer Methods for Global Optimization. John Wiley and Sons, New York.

    Google Scholar 

  • Tesfatsion, L. (1991). Automatic evaluation of higher-order partial derivatives for nonlocal sensitivity analysis. In A. Griewank and G. Corliss (eds.), Automatic Differentiation of Algorithms: Theory, Implementation, and Application, 157-166. SIAM.

  • Van Iwaarden, R. (1993). Automatic differentiation applied to unconstrained nonlinear optimization with result verification. Interval Computations, 4, 30-41.

    Google Scholar 

  • Walter, W.V. (1993). Acrith-xsc: A fortran-like language for verified scientific computing. In E. Adams and U. Kulisch (eds.), Scientific Computing with Automatic Result Verification, 45-70. Academic Press, Inc., Boston.

    Google Scholar 

  • Wengert, R.E. (1964). A simple automatic derivative evaluation program. Comm. ACM, 7(8), 463-464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

JERRELL, M.E. Automatic Differentiation and Interval Arithmetic for Estimation of Disequilibrium Models. Computational Economics 10, 295–316 (1997). https://doi.org/10.1023/A:1008633613243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008633613243

Navigation