Skip to main content
Log in

Stochastic Analysis of the Fractional Brownian Motion

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Since the fractional Brownian motion is not a semi-martingale, the usual Ito calculus cannot be used to define a full stochastic calculus. However, in this work, we obtain the Itô formula, the Itô–Clark representation formula and the Girsanov theorem for the functionals of a fractional Brownian motion using the stochastic calculus of variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcones, M.A.: ‘On the law of the iterated logarithm for Gaussian processes’, Journal of Theoretical Probability 8(4) (1995), 877-904.

    Google Scholar 

  2. Barton, R.J. and Vincent Poor, H.: ‘Signal detection in fractional Gaussian noise’, IEEE Trans.on Information Theory 34(5) (1988), 943-959.

    Google Scholar 

  3. Bertoin, J.: ‘DeSur un intégrale pour les processus à variation bornée’, The Annals of Probability 17(4) (1989), 1521-1535.

    Google Scholar 

  4. Bouleau, N. and Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space, De Gruyter Studies in Mathematics, Berlin, New York, 1992.

    Google Scholar 

  5. Coelho, R. and Decreusefond, L.: ‘Smoothed video trafic modelling for statistical multiplexing analysis’, in: Kouvatsos D. (ed.), Sixth IFIP Workshop on Performance Modelling and Evaluation of ATM Networks, Chapman & Hall, London, 1995.

    Google Scholar 

  6. Feyel, D. and de La Pradelle, A.: Fractional integrals and Brownian processes, Preprint, Université d'Évry, 1996, 1996.

  7. Föllmer, H.: ‘Calcul d'Itô sans probabilité’, in: Azema J. (ed.) Séminaire de probabilités, Springer-Verlag, 1980, pp. 143-150.

  8. Leland, W.E., Taqqu, M.S., Willinger, W. and Wilson, D.V.: ‘On the self-similar nature of ethernet traffic’, IEEE/ACM Trans.Networking 2(1) (1994), 1-15.

    Google Scholar 

  9. Lin, S.J.: Stochastic analysis of fractional Brownian motions. To appear in Stochastics, 1996, 1996.

  10. Mandelbrot, B. and Van Ness, J.: ‘Fractional Brownian motions, fractional noises and applications’, SIAM Review 10(4) (1968), 422-437.

    Google Scholar 

  11. Nikiforov, A.F. and Uvarov, V.B.: Special Functions of Mathematical Physics, Birkhäuser, Boston, 1988.

    Google Scholar 

  12. Norros, I.: ‘On the use of the fractional Brownian motion in the theory of connectionless networks’, IEEE Jour.on Sel.Ar.in Communications 13(6) (1995), 953-962.

    Google Scholar 

  13. Samko, S.G., Kilbas, A.A. and Marichev, O.I.: Fractional Integrals and Derivatives, Gordon and Breach Science, 1993.

  14. Ñstünel, A.S.: ‘The Itô formula for anticipative processes with non-monotonous time scale via the Malliavin calculus’, Probability Theory and Related Fields 79(1988), 249-269.

    Google Scholar 

  15. Ñstünel, A.S.: An Introduction to Analysis on Wiener Space, Lectures Notes in Mathematics 1610, Springer-Verlag, 1995.

  16. Ñstünel, A.S. and Zakai, M.: ‘The constructions of filtrations on abstract Wiener spaces’, Journal of Funct.Analysis 143(1) 1997.

  17. Watanabe, S.: Lectures on Stochastic Differential Equations and Malliavin CalculusTata Institute of Fundamental Research, 1984.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decreusefond, L., üstünel, A. Stochastic Analysis of the Fractional Brownian Motion. Potential Analysis 10, 177–214 (1999). https://doi.org/10.1023/A:1008634027843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008634027843

Navigation