Skip to main content
Log in

Molecular-Dynamics Method for the Simulation of Grain-Boundary Migration

  • Published:
Interface Science

Abstract

A molecular-dynamics method for the simulation of the intrinsicmigration behavior of individual, flat grain boundaries is introducedand validated. A constant driving force for grain-boundary migrationis generated by imposing an anisotropic elastic strain on a bicrystalsuch that the elastic-energy densities in its two halves aredifferent. For the model case of a large-planar-unit-cell, high-angle(001) twist boundary in Cu we show that an elastic strain of∼1%–4% is sufficient to drive thecontinuous, viscous movement of the boundary at temperatures wellbelow the melting point. The driving forces thus generated (at thehigh end of the experimentally accessible range) enable aquantitative evaluation of the migration process during the timeframe of 10-9 s typically accessible bymolecular-dynamics simulation. For this model high-angle grainboundary we demonstrate that (a) the drift velocity is, indeed,proportional to the applied driving force thus enabling us todetermine the boundary mobility, (b) the activation energy forgrain-boundary migration is distinctly lower than that forgrain-boundary self-diffusion or even self-diffusion in the melt and(c) in agreement with earlier simulations the migration mechanisminvolves the collective reshuffling during local disordering(“melting”) of small groups of atoms and subsequentresolidification onto the other crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, F.S. Humphreys and N. Hatherly, Recrystallization and Related Annealing Phenomena(Pergamon, 1995).

  2. K.T. Aust and J.W. Rutter, in Recovery and Recrystallization of Metals, edited by L. Himmel (AIME, Interscience Publishers, New York, 1963), p. 131.

    Google Scholar 

  3. K. Lücke and H.-P. Stü we, in Recovery and Recrystallization of Metals, edited by L. Himmel (AIME, Interscience Publishers, New York, 1963), p. 171.

    Google Scholar 

  4. R. Viswanathan and C.L. Bauer, Acta Metall. 21, 1099 (1973).

    Google Scholar 

  5. S.E. Babcock and R.W. Balluffi, Acta Metall. 37, 2357 and 2367 (1989).

    Google Scholar 

  6. G. Gottstein and L.S. Shvindlerman, Scripta Metall. Mater. 27, 1521 (1992).

    Google Scholar 

  7. N.F. Mott, Proc. Phys. Soc. 60, 391 (1948).

    Google Scholar 

  8. D. Turnbull, Trans. AIME 191, 661 (1951).

    Google Scholar 

  9. D.A. Smith, C.M.F. Rae, and C.R.M. Grovenor, in Grain Boundary Structure and Kinetics, edited by R.W. Balluffi (ASM, Metals Park, Ohio, 1980), p. 337.

    Google Scholar 

  10. R. Jhan and P.D. Bristowe, Scripta Metall. Mater. 24, 1313 (1990).

    Google Scholar 

  11. A.P. Sutton, in Computer Simulation of Materials Science: Nano/Meso/Macroscopic Space and Time Scales, edited by H.O. Kirchner, L.P. Kubin, and V. Pontikis (NATO-ASI Series E, 1996), Vol. 308, pp. 163–187.

  12. J.M. Rickman, S.R. Phillpot, D. Wolf, D.L. Woodraska, and S. Yip, J.Mater. Res. 6, 2291 (1991).

    Google Scholar 

  13. See, for example, D. Wolf, in Materials Interfaces: Atomic-level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), Chap. 1, p. 1.

    Google Scholar 

  14. J.F. Nye, Physical Properties of Crystals(Clarendon Press, Oxford, 1957).

    Google Scholar 

  15. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    Google Scholar 

  16. C.L. Bauer, J. Phys. (Paris), Colloque 43, C6–187 (1982).

    Google Scholar 

  17. S.R. Phillpot and J.M. Rickman, J. Chem. Phys. 94, 1454 (1991).

    Google Scholar 

  18. D. Wolf, J.F. Lutsko, and M. Kluge, in Atomistic Simulations of Materials-Beyond Pair Potentials, edited by V. Vitek and D. Srolovitz (Plenum Press, 1989), p. 245.

  19. D. Wolf and K.L. Merkle, in Materials Interfaces: Atomic-level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), Chap. 3, p. 87.

    Google Scholar 

  20. J.F. Lutsko, D. Wolf, S. Yip, S.R. Phillpot, and T. Nguyen, Phys. Rev. B 38, 11572 (1988).

    Google Scholar 

  21. J.M. Rickman and S.R. Phillpot, Phys. Rev. Letters 66, 349 (1991).

    Google Scholar 

  22. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1986).

    Google Scholar 

  23. M.W. Finnis and J.E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Google Scholar 

  24. J.A. Jaszczak and D. Wolf, Phys. Rev. B 46, 2473 (1992).

    Google Scholar 

  25. D. Wolf, Acta Metall. 37, 1983 (1989).

    Google Scholar 

  26. R.W. Balluffi, J. Nucl. Mats. 69 & 70, 240 (1978).

    Google Scholar 

  27. P. Keblinski, Private Communication (1996).

  28. J. Henderson and L. Yang, Trans. Met. Soc. AIME 72, 221 (1971).

    Google Scholar 

  29. W.T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).

    Google Scholar 

  30. W. In der Schmitten, P. Haasen, and F. Haessner, Z. Metallk. 51, 101 (1960).

    Google Scholar 

  31. CRC Materials Science and Engineering Handbook, edited by J.F. Shackelford (CRC Press, 1994), p. S–64.

  32. See also A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials(Oxford, 1995), p. 550ff.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönfelder, B., Wolf, D., Phillpot, S. et al. Molecular-Dynamics Method for the Simulation of Grain-Boundary Migration. Interface Science 5, 245–262 (1997). https://doi.org/10.1023/A:1008663804495

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008663804495

Navigation