Skip to main content
Log in

Genetic diversity in wild cereals: regional and local studies and their bearing on conservation ex situ and in situ

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The current alarming global crisis and extinction of biodiversity affect negatively the planet's biosphere. Conservation of biodiversity is one attempt to alleviate the pending extinction of the biosphere by humans. Genetic diversity, the basis of evolution by natural selection, is gravely threatened in the progenitors of cultivated plants and its exploration, evaluation, conservation in situ and ex situ is imperative to guarantee sustainable development. This is illustrated by the population genetics and ecology of two important progenitors of cereals wild, wheat and barley. The wild cereals are rich in adaptive genetic diversity in the Fertile Crescent, primarily in Israel, which is their center of origin and diversity. The 40–55% intrapopulation diversity level in the wild cereals contrasts sharply with the average of 80% in outbreeders. Genetic diversity in wild wheat and barley is structured, particularly in wild emmer wheat, as an 'archipelago' ecological and genetic structure. These include central, semi-isolated and ecologically peripheral and marginal isolated populations, where specific alleles and allele combinations predominate as coadapted blocks of genes, adaptive to diverse ecological stresses. These involve both physical (climatic and edaphic) and biotic (pathogens and parasites) stresses at macro- and microgeographical scales. Complementary in situ and ex situ conservation is imperative across the geographic range of these species, to safeguard their immensely important genetic resources for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn, S. & S.D. Tanksley, 1993. Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA 90: 7980–7984.

    Google Scholar 

  • Alpert, K.B. & S.D. Tanksley, 1996. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. PNAS 93: 15503–15507.

    Google Scholar 

  • Anikster, Y. & I. Noy-Meir, 1991. Studies of a wild wheat population at Ammiad, Israel. The wild-wheat field laboratory at Ammiad. Isr. J. Bot. 40: 351–362.

    Google Scholar 

  • Anikster, Y., A. Eshel, S. Ezrati & A. Horovitz., 1991. Patterns of phenotypic variation in wild tetraploid wheat at Ammiad. Isr. J. Bot. 40: 397–418.

    Google Scholar 

  • Anikster, Y., M. Feldman & A. Horovitz., 1997. The Ammiad experiment. In: N. Maxted, B.V. FordLloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall. pp. 239–253.

  • Atlas of Israel., 1970. Survey of Israel. Jerusalem: Ministry of Labour. Elsevier, Amsterdam.

    Google Scholar 

  • Avivi, L., 1978. High grain protein content in wild tetraploid wheat, Triticum dicoccoides Korn. Proc. 5th Int. Wheat Genet. Symp., New Delhi, pp. 372–380.

  • Baum, B.R., E. Nevo, D.A. Johnson & A. Beiles., 1997. Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the Near East: a molecular analysis using Random Amplified Polymorphic DNA (RAPD) markers. Genet. Res. Crop Evol. 44: 147–157.

    Google Scholar 

  • Brown, A.H.D. & D.J. Schoen., 1992. Plant population genetic structure and biological conservation. In: O.T. Sandlund, O.T., K. Hindar & A.H.D. Brown (Eds), Conservation of Biodiversity for Sustainable Development. Scandinavian Univ. Press, pp. 88–104, Oslo.

  • Brown, A.H.D. & D.J. Schoen., 1994. Optimal sampling strategies for core collections of plant genetic resources. In: Loeschcke, V., J. Tomiuk & S.K. Jain (Eds), Conservation Genetics. Birkhauser Verlag, Basel.

    Google Scholar 

  • Brown, A.H.D., D. Zohary & E. Nevo., 1978. Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity 41: 49–62.

    Google Scholar 

  • Brown, A.H.D., M.W. Feldman & E. Nevo., 1980. Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96: 523–536.

    Google Scholar 

  • Brown, A.H.D., O.H. Frankel, D.R. Marshall & J.T. Williams (Eds), 1989. The Use of Plant Genetic Resources. Cambridge University Press.

  • Brown, H.D., M.T. Clegg, A.L. Kahler & B.S. Weir (Eds), 1990. Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Assoc. Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Carver, B.F. & E. Nevo., 1990. Genetic diversity of photosynthetic characters in native populations of Triticum dicoccoides. Photosynth. Res. 25: 119–128.

    Google Scholar 

  • Chalmers, K.J., R. Waugh, J. Waters, B.P. Forster, E. Nevo & W. Powell., 1992. Grain isozyme and ribosomal DNA variability in Hordeum spontaneum populations from Israel. Theor. Appl. Genet. 84: 313–322.

    Google Scholar 

  • Dawson, I.K., K.J. Chalmers, R. Waugh & W. Powell., 1993. Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol. Ecol. 2: 151–159.

    Google Scholar 

  • Dinnor, A., 1974. Role of wild and cultivated plants in the epidemiology of plant diseases in Israel. Ann. Rev. Phytopth., 12: 413–436.

    Google Scholar 

  • Dinoor, A., N. Eshed, R. Ecker, Z. GerechterAmitai, Z. Solel, J. Manisterski & Y. Anikster., 1991. Fungal diseases of wild tetraploid wheat in a natural stand in northern Israel. Isr. J. Bot. 40: 481–500.

    Google Scholar 

  • Ehrlich, P.R. & E.O. Wilson., 1991. Biodiversity Studies: Science and Policy. Science 253: 758–762.

    Google Scholar 

  • Fahima, T., M. Roder, A. Grama & E. Nevo., 1998. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor. Appl. Genet. 96: 187–195.

    Google Scholar 

  • Feldman, M., 1979. Genetic resources of wild wheats and their use in breeding. Monogr. Genet. Agrar. 4: 9–26.

    Google Scholar 

  • Feldman, M. & E.R. Sears., 1981. The wild gene resources of wheat. Sci. Amer. 244: 102–112.

    Google Scholar 

  • Felsenburg, T., A.A. Levy, G. Galili & M. Feldman., 1991. Polymorphism of high-molecular-weight glutenins in wild tetraploid wheat: spatial and temporal variation in a native site. Isr. J. Bot. 40: 451–480.

    Google Scholar 

  • Fiedler, P.L. & S.K. Jain (editors)., 1992. Conservation Biology: The Theory and Practice of Nature Conservation Preservation and Management. Chapman and Hall, New York and London.

    Google Scholar 

  • FordLloyd, B.V. & N. Maxted., 1997. Genetic conservation information management. In: Maxted, N., B.V. FordLloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall; pp., 176–191.

  • Forster, B.P., C.N. Law, E. Nevo & W. Powell., 1990. Genetic strategies for improving the salt tolerance of wheat and barley. In Proceedings of the Intern. Symp. on Molecular and Genetic Approaches to Plant Stress. New Delhi, India; T31: 1–3.

  • Forster, B.P., L.L. Handley, H. Pakniyat, C.B. Scrimgeour, E. Nevo & J.A. Raven., 1994a. Genetic and ecological factors controlling carbon isotope discrimination in barley. Aspec. Appl. Biol. 38: 139–143.

    Google Scholar 

  • Forster, B.P., H. Pakniyat, M. Macaulay, W. Matheson, M.S. Phillips, W.T.B. Thomas & W. Powell., 1994b. Variation in leaf sodium content of Hordeum vulgare (Barley) cultivar Maythorpe and its derived mutant cv. Golden Primise. Heredity 73: 249–253.

    Google Scholar 

  • Forster, B.P., H. Pakniyat, C.G. Simpson, & L.L. Handley., 1995. Genetic control of salt tolerance in barley. In Induced Mutations and Molecular Techniques for Crop Improvement. Vienna, Austria. IAEA/FAO; 347–353.

  • Frankel, O.H. & E. Bennett., 1970. Genetic Resources in Plants Their Exploration and Conservation. Blackwell, Oxford.

    Google Scholar 

  • Frankel, O.H. & J.G. Hawkes., 1975. Crop Genetic Resources for Today and Tomorrow. Cambridge Univ. Press, Cambridge, England.

    Google Scholar 

  • Frankel, O.H. & M.E. Soule'., 1981. Conservation and Evolution. Cambridge Univ. Pres, Cambridge, England.

    Google Scholar 

  • Frankel, O.H., A.H.D. Brown & J.J Burdon., 1995. The Conservation of Plant Biodiversity. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gerechter-Amitai, Z.K. & R.W. Stubbs., 1970. A valuable source of yellow rust resistance in Israeli populations of wild emmer, Triticum dicoccoides Korn. Euphytica 19: 12–21.

    Google Scholar 

  • Gerechter-Amitai, Z.K., C.H. van Silfhout & A. Grama., 1989. Yr15a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G25. Euphytica 43: 187–190.

    Google Scholar 

  • Gillman, M., 1997. Plant population ecology. In Maxted, N., B.V. FordLloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall; pp., 114–131.

  • Grama, A., Z.KJ. Gerechter-Amitai & A. Blum., 1983. Wild emmer as donor of genes for resistance to stripe rust and for high protein content. Proc. 6th Int. Wheat Genet. Symp. Kyoto, Japan: 187– 192.

  • Golenberg, E.M., 1986. Linkage relationships in wild emmer wheat, Triticum dicoccoides. Genetics 114: 1023–1031.

    Google Scholar 

  • Golenberg, E.M., 1987. Estimation of gene flow and genetic neighborhood size by indirect methods in a selfing annual, Triticum dicoccoides. Evolution 41: 1326–1334.

    Google Scholar 

  • Golenberg, E.M. & E. Nevo., 1987. Multilocus differentiation and population structure in a selfer, wild emmer wheat, Triticum dicoccoides. Heredity 58: 951–956.

    Google Scholar 

  • Handley, L.L., E. Nevo, J.A. Raven, R. Martinez-Carrasco, C.M. Scrimgeour, H. Pakniyat & B.P. Forster., 1994. Chromosome 4 controls potential water use efficiency (delta 13C) in barley. J. Exper. Bot. 45: 1661–1663.

    Google Scholar 

  • Handley, L.L., D.R. Robinson, C.M. Scrimgeour, B.P. Forster, R.P. Ellis & E. Nevo., 1997a. Correlating molecular markers with physiological expression in Hordeum, a developing approach using stable isotopes. New Phytologist 137: 159–163.

    Google Scholar 

  • Handley, L.L., D. Robinson, B.P. Forster, R.P. Ellis, C.M. Scrimgeour, D.C. Gordon, E. Nevo & J.A. Raven. 1997b. Shoot delta 15N correlates with genotype and salt stress in barley. Planta 201: 100–102.

    Google Scholar 

  • Harlan, J.R., 1975. Our vanishing genetic resources. Science 188: 618–621.

    Google Scholar 

  • Harlan, J. & D. Zohary., 1966. Distribution of wild wheats and barley. Science 153: 1074–1080.

    Google Scholar 

  • Hawkes, J.G., 1983. The Diversity of Crop Plants. Harvard University Press, Cambridge.

    Google Scholar 

  • Hawkes, J.G., 1991. International workshop in dynamic in situ conservation of wild relatives ofmajor cultivated plants: Summary of final discussion and recommendations. Isr. J. Bot. 40: 529–536.

    Google Scholar 

  • Hawkes, J.G., N. Maxted & D. Zohary., 1997. Reserve design. In: Maxted, N., B.V. FordLloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall; pp., 132–143.

  • Hawksworth, D.L. (Ed) 1995. Biodiversity, Measurement and Estimation. Chapman & Hall, London.

    Google Scholar 

  • Holden, J., J. Peacock & T. Williams., 1993. Genes, Crops, and the Environment. Cambridge University Press, Cambridge.

    Google Scholar 

  • Horovitz, A. & M. Feldman., 1991. Evaluation of the wild-wheat study at Ammiad. Isr. J. Bot. 40: 501–508.

    Google Scholar 

  • Hunger, R.M., J.L. Sherwood, R.E. Pennington, B.F. Carver & E. Nevo., 1992. Reaction of native populations of Triticum dicoccoides to wheat soilborne mosaic. (Abstract). In Biological & Cultural Tests for Control of Plant Diseas. Vol. 7. APS Press.

  • IBPGR., 1985. Ecogeographical Surveying and In Situ Conservation of Crop Relative. IBPGR Secretariat, Rome.

    Google Scholar 

  • Israel J. Bot. 1991. International Workshop on Dynamic in situ Conservation of Wild Relatives of Major Cultivated Plants. 2–5 April, 1991. Jerusalem, Israel. Abstracts of invited papers. Isr. J. Bot. 40: 509–519.

    Google Scholar 

  • Jana, S. & E. Nevo., 1991. Variation in response to infection with Erysiphe graminis hordei andPuccinia hordei in somewild barley populations in a centre of diversity. Euphytica 57: 133–140.

    Google Scholar 

  • Jaradat, A.A., 1989. Ecotypes and genetic divergence among sympatrically distributed populations of Hordeum vulgare and Hordeum spontaneum from the xeric region of Jordan. Theor. Appl. Genet. 89: 857–862.

    Google Scholar 

  • Jaradat, A.A., 1997a. Wild emmer wheat in Jordan: I. ecotypes and phenotypic variation. Isr. J. Pl. Sci. 45: 31–37.

    Google Scholar 

  • Jaradat, A.A., 1997b. Wild emmer wheat in Jordan: II. genetic distances between and within populations. Isr. J. Pl. Sci. 45: 39–44.

    Google Scholar 

  • Jaradat, A.A., 1997c. Wild emmer wheat in Jordan: III. a core collection. Isr. J. Pl. Sci. 45: 45–51.

    Google Scholar 

  • Jaradat, A.A. & B.O. Humeid., 1990. Morphological variation in Triticum dicoccoides from Jordan. In: Srvastava J.P. & A.B. Damania (Eds),Wheat genetic resources: Meeting diverse needs, pp. 215–222. Wily-Chayce, Chichester, UK.

    Google Scholar 

  • Joppa, L.R., E. Nevo & A. Beiles., 1995. Chromosome translocations in wild populations of tetraploid emmer wheat in Israel and Turkey. Theor. Appl. Genet. 91: 713–719.

    Google Scholar 

  • Kahler, A.L., R.W. Allard, M. Krzakowa, C.R. Wehrhahn & E. Nevo., 1980. Associations between isozyme phenotypes and environment in the slender wild oat (Avena barbata) in Israel. Theor. Appl. Genet. 56: 31–47.

    Google Scholar 

  • Kashi, Y., D. King & M. Soller., 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics 13: 74–78.

    Google Scholar 

  • Keesing, V. & S.D. Wratten., 1997. Integrating plant and insect conservation. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp. 220–238.

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • King, D.G., M. Soller & Y. Kashi., 1997. Evolutionary tuning knobs. Endevour 21: 36–40.

    Google Scholar 

  • Korol, A.B., I.A. Preygel & S.I. Preygel., 1994. Recombination Variability and Evolution. Chapman and Hall, London.

    Google Scholar 

  • Krugman, T., O. Levy, J.W. Snape, B. Rubin, A. Korol & E. Nevo., 1997. Comparative RFLP mapping of the chlorotoluron resistance gene (Su1) in cultivated wheat (Triticum aestivum) and wild wheat (Triticum dicoccoides). Theor. Appl. Genet. 94: 46–51.

    Google Scholar 

  • Lander, E.S., 1996. The new genomics: Global views of biology. Science 274: 536–539.

    Google Scholar 

  • Lawrence, M.J. & D.F. Marshall., 1997. Plant population genetics. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp. 99–113.

  • Li, Y.C., T. Fahima, G.L. Sun, A. Beiles, A. Korol & E. Nevo., 1998. Molecular analysis of DNA polymorphism: a microgeographical edaphic differentiation in wild emmer wheat, Triticum dicoccoides. (Submitted).

  • Loeschcke, V., J. Tomiuk & S.K. Jain., 1994. Conservation Genetics. Birkhauser Verlag, Basel.

    Google Scholar 

  • Maxted, N. & L. Guarino., 1997. Ecogeographic surveys In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp. 69–87.

  • Maxted, N. & J.G. Hawkes., 1997. Selection of target taxa. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp. 43– 68.

  • Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds) 1997a. Plant Genetic Conservation. The in situ Approach. Chapman and Hall, London.

    Google Scholar 

  • Maxted, N., B.V. Ford-Lloyd & J.C. Hawkes., 1997b. Complementary conservation strategies. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp., 15–39.

  • Maxted, N., L. Guarino & M.E. Dulloo., 1997c. Management and monitoring. In: Maxted, N., B.V. Ford–Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp., 144–159.

  • Mitton, J.B., 1994. Molecular approaches to population biology. Ann. Rev. Ecol. Syst. 25: 45–69.

    Google Scholar 

  • Moseman, J.G., E. Nevo & D. Zohary., 1983. Resistance of Hordeum spontaneum collected in Israel to infection with Erysiphe graminis hordei. Crop. Sci. 23: 1115–1119.

    Google Scholar 

  • Moseman, J.G., M.A. ElMorshidy, E. Nevo & D. Zohary., 1984. Resistance of Triticum dicoccoides to infection with Erysiphe graminis tritici. Euphytica 33: 41–47.

    Google Scholar 

  • Moseman, J.G., E. Nevo, Z.K. Gerechter-Amitai, M.A. ElMorshidy & D. Zohary., 1985. Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop. Sci. 25: 262–265.

    Google Scholar 

  • Moseman, J.G., E. Nevo & M.A. El-Morshidy., 1990. Reactions of Hordeum spontaneum to infection with 2 cultures of Puccinia hordei from Israel and the United States. Euphytica 49: 169–176.

    Google Scholar 

  • Nevo, E., 1978. Genetic variation in natural populations: Patterns and theory. Theor. Pop. Biol., 13: 121–177.

    Google Scholar 

  • Nevo, E., 1983a. Genetic resources of wild emmer wheat: Structure, evolution and application in breeding. In: Sakamoto, S., (Ed), Proc. 6th Intl. Wheat Genetics Symp.. pp. 421–431, Kyoto Univ. Kyoto, Japan.

    Google Scholar 

  • Nevo, E., 1983b. Population genetics and ecology: The interface. In: D.S. Bendall (Ed). Evolution fromMolecules toMen. Cambridge Univ. Press, Cambridge; 287–321.

    Google Scholar 

  • Nevo, E., 1983c. Adaptive significance of protein variation. In: G.S. Oxford & D. Rollinson (Eds), Systematic Association. Special Volume 24 Protein Polymorphism: Adaptive and Taxonomic Significance. Academic Press, New York; 239–282.

    Google Scholar 

  • Nevo, E., 1986a. Pollution and genetic evolution in marine organisms: Theory and Practice. In: Dubinsky Z. & Y. Steinberger (Eds), Environmental Quality and Ecosystem Stability Vol. IIIA/B pp. 841–848K, Bar Ilan Univ. Press, Ramat Gan.

    Google Scholar 

  • Nevo, E., 1986b. Genetic resources of wild cereals and crop improvement: Israel, a natural laboratory. Isr. J. Bot. 35: 255–278.

    Google Scholar 

  • Nevo, E., 1987. Plant genetic resources: Prediction by isozyme markers and ecology. In: Rattazi, M.C., J.G. Scandalios & G.S. Whitt (Eds) Isozymes, pp. 247–267, Current Topics in Biological Research., 16.

  • Nevo, E., 1988a. Genetic resources of wild emmer wheat revisited: genetic evolution, conservation and utilization. In: Miller T.E. & R.M.D. Koebner (Eds), Proceedings 7th Inter. Wheat Genetics Symp, pp., 121–126, Inst. of Plant Sci. Res. Cambridge, England.

    Google Scholar 

  • Nevo, E., 1988b. Genetic diversity in nature: Patterns and theory. Evol. Biol. 23: 217–247.

    Google Scholar 

  • Nevo, E., 1990. Molecular Evolutionary Genetics of isozymes: Patterns, theory and application. In Isozymes: Structure, Function and Use in Biology and Medicine. WileyLiss, Inc. 701–742.

  • Nevo, E., 1992. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry P.R., (Ed), Barley: Genetics, biochemistry, molecular biology and biotechnology, pp., 19–43, CAB Internat.

  • Nevo, E., 1995a. Genetic resources of wild emmer, Triticum dicoccoides for wheat improvement: News and Views. Proc. Intern. 8th Wheat Genet. Symp., 20–25 July, 1993. Beijing. pp. 79–87. China Agricultural Scientech Press, Beijing.

    Google Scholar 

  • Nevo, E., 1995b. Asian, African and European biota meet at 'Evolution Canyon', Israel: Local tests of global biodiversity and genetic diversity patterns. Proc. Roy. Soc. Lond. B262: 149–155.

    Google Scholar 

  • Nevo, E., 1997. Evolution in action across phylogeny caused by microclimatic stresses at 'Evolution Canyon'. Theor. Pop. Biol. 52: 231–243.

    Google Scholar 

  • Nevo, E., 1998a. 'Evolution Canyon': A natural microscale model of evolution in action. Plant Genetics Newsletter, Botanical Soc. of Amer. (in press).

  • Nevo, E., 1998b. Molecular evolution and ecological stress at global, regional and local scales: The Israeli perspective. Jour. Exp. Zool. (in press).

  • Nevo, E. & A. Beiles., 1988. Genetic parallelism of protein polymorphismin nature: Ecological test of the neutral theory ofmolecular evolution. Biol. J. Linn. Soc. 35: 229–245.

    Google Scholar 

  • Nevo, E. & A. Beiles., 1989. Genetic diversity of wild emmer wheat in Israel and Turkey: Structure, evolution and application in breeding. Theor. Appl. Genet. 77: 421–455.

    Google Scholar 

  • Nevo, E. & A. Beiles., 1991. Genetic diversity and ecological heterogeneity in amphibian evolution. Copia 1991: 565–592.

    Google Scholar 

  • Nevo, E. & A. Beiles., 1992. Aminoacid resources in the wild progenitor of wheats, Triticum dicoccoides, in Israel: Polymorphisms and predictability by ecology and isozymes. Pl. Breed. 108: 190–201.

    Google Scholar 

  • Nevo, E. & P.I. Payne., 1987. Wheat storage proteins: Diversity of HMWglutenin subunits in wild emmer from Israel. I. Geographical patterns and ecological predictability. Theor. Appl. Genet. 74: 827–836.

    Google Scholar 

  • Nevo, E., D. Zohary, A.H.D. Brown and M. Haber., 1979. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33: 815–833.

    Google Scholar 

  • Nevo, E., A.H.D. Brown, D. Zohary, N. Storch & A. Beiles. 1981. Microgeographic edaphic differentiation in allozyme polymorphisms of wild barley (Hordeum spontaneum, Poaceae). Pl. Syst. Evol., 138: 287–292.

    Google Scholar 

  • Nevo, E., E. Golenberg, A. Beiles, A.H.D. Brown & D. Zohary., 1982. Genetic diversity and environmental associations of wild wheat, Triticum dicoccoides, in Israel. Theor. Appl. Genet. 62: 241–254.

    Google Scholar 

  • Nevo, E., A. Beiles, N. Storch, H. Doll & B. Andersen. 1983. Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theor. Appl. Genet. 64: 123–132.

    Google Scholar 

  • Nevo, E., A. Beiles & R. Ben-Shlomo., 1984a. The evolutionary significance of genetic diversity: Ecological, demographic and life history correlates. Lecture Notes in Biomathematics 53: 13– 213.

    Google Scholar 

  • Nevo, E., A. Beiles, Y. Gutterman, N. Storch & D. Kaplan. 1984b. Genetic resources of wild cereals in Israel and vicinity: I. Phenotypic variation within and between populations of wild wheat, Triticum dicoccoides. Euphytica 33: 717–735.

    Google Scholar 

  • Nevo, E., A. Beiles, Y. Gutterman, N. Storch & D. Kaplan. 1984c. Genetic resources of wild cereals in Israel and vicinity. II. Phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica 33: 737–756.

    Google Scholar 

  • Nevo, E., J.G. Moseman, A. Beiles & D. Zohary., 1985. Patterns of resistance of Israeli wild emmer wheat to pathogens. I. Predictive method by ecology and alozyme genotypes for powdery mildew and leaf rust. Genetica 67: 209–222.

    Google Scholar 

  • Nevo, E., A. Beiles & D. Zohary., 1986a. Genetic resources of wild barley in the Near East: Structure, evolution and application in breeding. Biol. J. Linn. Soc. 27: 355–380.

    Google Scholar 

  • Nevo, E., A. Beiles, D. Kaplan, N. Storch & D. Zohary. 1986b. Genetic diversity and environmental associations of wild barley, Hordeum vulgare (Poaceae), in Iran. Plant Syst. & Evol., 153: 141–164.

    Google Scholar 

  • Nevo, E., D. Zohary, A. Beiles, D. Kaplan & N. Storch. 1986c. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Turkey. Genetica 68: 203–213.

    Google Scholar 

  • Nevo, E., A. Grama, A. Beiles & E.M. Golenberg., 1986d. Resources of high-protein genotypes in wild wheat, Triticum dicoccoides in Israel. Predictive method by ecology and allozyme markers. Genetica 68: 215–227.

    Google Scholar 

  • Nevo, E., A. Beiles, D. Kaplan, E.M. Golenberg, L. Olsvig-Whittaker & Z. Naveh., 1986e. Natural selection of allozyme polymorphisms: A microsite test revealing ecological genetic differentiation in wild barley. Evolution 40: 13–20.

    Google Scholar 

  • Nevo, E. Z. Gerechter-Amitai, A. Beiles & E.M. Golenberg. 1986f. Resistance of wild wheat to stripe rust: Predictive method by ecology and allozyme genotypes. Pl. Syst. Evol., 153: 13–30.

    Google Scholar 

  • Nevo, E., A. Beiles & D. Kaplan., 1988a. Genetic diversity and environmental associations of wild emmer wheat in Turkey. Heredity 61: 31–45.

    Google Scholar 

  • Nevo, E., A. Beiles & T. Krugman., 1988b. Natural selection of allozyme polymorphisms: A microgeographic climatic differentiation in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 75: 529–538.

    Google Scholar 

  • Nevo, E., A. Beiles & T. Krugman., 1988c. Natural selection of allozyme polymorphisms: microgeographic differentiation by edaphic, topographical and temporal factors in wild emmerwheat Triticum dicoccoides in Israel. Theor. Appl. Genet. 76: 737–752.

    Google Scholar 

  • Nevo, E., M.G. Filippucci & A. Beiles., 1990. Genetic diversity and its ecological correlates in nature: Comparison between subterranean, fossorial and aboveground small mammals. In: Nevo E. & O.A. Reig (Eds), Evolution of Subterranean Mammals at the Organismal and Molecular Levels, pp. 347–366, Alan R. Liss Inc., New York.

    Google Scholar 

  • Nevo, E., I. Noy-Meir, A. Beiles, T. Krugman & M. Agami. 1991a. Natural selection of allozyme polymorphisms: microgeographical spatial and temporal ecological differentiations in wild emmer wheat. Isr. J. Bot. 40: 419–449.

    Google Scholar 

  • Nevo, E. Z. Gerechter-Amitai & A. Beiles., 1991b. Resistance of wild emmer wheat to stem rust: Ecological, pathological and allozyme assocations. Euphytica 53:121–130.

    Google Scholar 

  • Nevo, E., B.F. Carver & A. Beiles., 1991c. Photosynthetic performance in wild emmer wheat Triticum dicoccoides: Ecological and genetic predictability. Theor. Appl. Genet. 81: 445–460.

    Google Scholar 

  • Nevo, E., J. Gorham & A. Beiles., 1992a.Variation for 22Nauptake in wild emmer wheat, Triticum dicoccoides in Israel: Salt tolerance resources for wheat improvement. J. Exp. Bot. 43: 511–518.

    Google Scholar 

  • Nevo, E., J.W. Snape, B. Lavie & A. Beiles., 1992b. Herbicide response polymorphisms in wild emmer wheat: ecological and isozyme correlations. Theor. Appl. Genet. 84: 209–216.

    Google Scholar 

  • Nevo, E., T. Krugman & A. Beiles., 1993. Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Pl. Breed., 110: 338–341.

    Google Scholar 

  • Nevo, E., T. Krugman & A. Beiles., 1994. Edaphic natural selection of allozyme polymorphisms in Aegilops peregina at a Galilee microsite in Israel. Heredity 72: 109–112.

    Google Scholar 

  • Nevo, E., M.A. Pagnotta, A. Beiles & E. Porceddue., 1995. Wheat storage proteins: glutenin DNA diversity in wild emmer wheat, Triticum dicoccoides, in Israel and Turkey. III. Environmental correlates and allozymic associations. Theor. Appl. Genet. 91: 415–420.

    Google Scholar 

  • Nevo, E., R. Ben-Shlomo, A. Beiles, Y. Ronin, S. Blum & J. Hillel., 1996. DNA fingerprinting reveals ecological correlations and genetic parallelism of allozyme and mitochondrial DNA diversities in the actively speciating blind mole rats in Israel. In: Roger, S., S. Holmes & H.A. Lim (Eds), Gene Families: Structure, Function, Genetics and Evolution, pp. 55–70, World Publ.

  • Nevo, E., I. Apelbaum-Elkaher, J. Garty & A. Beiles., 1997a. Natural selection causes microscale allozyme diversity in wild barley and a lichen at 'Evolution Canyon', Mt. Carmel, Israel. Heredity 78: 373–382.

    Google Scholar 

  • Nevo, E. V. Kirzhner, A. Beiles & A. Korol., 1997b. Selection versus random drift: longterm polymorphism persistence in small populations (evidence and modelling). Phil. Trans. R. Soc. Lond. B 352: 381–389.

    Google Scholar 

  • Nevo, E., B. Baum, A. Beiles & D.A. Johnson., 1998. Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum in the Fertile Crescent. Genet. Res. Crop Evol. 45: 151–159.

    Google Scholar 

  • Newbury, H.J. & B.V. Ford-Lloyd., 1997. Estimation of genetic diversity. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach, pp., 192–206, Chapman and Hall.

  • Noy-Meir, I., M. Agami & Y. Anikster., 1991a. Changes in the population density of wild emmer wheat (Triticum turgidum var. dicoccoides) in a Mediterranean grassland. Isr. J. Bot. 40: 385–396.

    Google Scholar 

  • Noy-Meir, I., M. Agami, E. Cohen & Y. Anikster., 1991b. Floristic and ecological differentiation of habitats within a wild wheat population at Ammiad. Isr. J. Bot. 40: 363–384.

    Google Scholar 

  • Owuor, E., T. Fahima, A. Beiles, A. Korol & E. Nevo., 1997. Population genetic response to microsite ecological stress in wild barley, Hordeum spontaneum. Molec. Ecol. 6: 1177–1187.

    Google Scholar 

  • Pagnotta, M.A., E. Nevo, A. Beiles & E. Porceddue., 1995. Wheat storage proteins: glutenin diversity in wild emmer, Triticum dicoccoides, in Israel and Turkey. II. DNA diversity detected by PCR. Theor. Appl. Genet. 91: 409–414.

    Google Scholar 

  • Pakniyat, H., W. Powell, E. Baird, L.L. Handley, D. Robinson, C.M. Scrimgeour, E. Nevo, C.A. Hackett, P.D.S. Caligari & B.P. Forster., 1997. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40: 332–341.

    Google Scholar 

  • Paterson, A.H., 1996. Genome Mapping in Plants. Landes Biomedical Publishing/Academic Press.

  • Plucknett, D.L., N.H.J. Smith, J.T. Williams & N.M. Anishetty., 1987. Gene Banks and the World's Food. Princeton University Press, Princeton.

    Google Scholar 

  • Prance, G.T., 1997. The conservation of botanical diversity. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach, pp., 1–4, Chapman and Hall.

  • Qualset, CLO., A.B. Damania, A.C.A. Zanatta & S.B. Brush. 1997. Locally based crop plant conservation. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. pp., 160–175, Chapman and Hall.

  • Saghai-Maroof, M.A., R.M. Biyashev, G.P. Yang, Q. Zhang, & R.W. Allard., 1994. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. USA 91:5466–5470.

    Google Scholar 

  • Sandlund, O.T., K. Hindar & A.H.D. Brown., 1992. Conservation of Biodiversity for Sustainable Development. Scandinavian Univ. Press, Oslo.

    Google Scholar 

  • Segal, A., J. Manisterski, G. Fischbeck & I. Wahl., 1980. How plant populations defend themselves in natural ecosystems. In: Horsfall J.G. & E.B. Cowling (Eds), Plant Disease: AnAdvanced Treatise, Vol. 5 pp. 76–102, Academic Press. New York.

    Google Scholar 

  • Segal, A., K.H. Dorr, G. Fischbeck, D. Zohary & I. Wahl. 1987. Genotypic composition and mildew resistance in natural populations of wild barley, Hordeum spontaneum. Z. Pflanzenzuchtung 99: 118–127.

    Google Scholar 

  • Snape, J.W., E. Nevo, B.B. Parker, D. Leckie & A. Morgunov. 1991a. Herbicide response polymorphisms in wild populations of emmer wheat. Heredity 66: 251–257.

    Google Scholar 

  • Snape, J.W., D. Leckie, B.B. Parker & E. Nevo., 1991b. The genetical analysis and exploitation of differential responses to Herbicides in crop species. In: Casley, J.C., G.W. Cussans & R.K. Atkin (Eds), Herbicide Resistance in Weeds and Crops, pp. 305–317, Butterworth-Heinemann, Oxford.

    Google Scholar 

  • Soule', M.E. editor., 1986. Conservation Biology: The Science of Scarcity and Diversity. Sinauer Asso. Inc., Publishers, Sunderland, MA.

    Google Scholar 

  • Soule', M.E., 1987. Viable Populations for Conservation. Cambridge Univ. Press, Cambridge, England.

    Google Scholar 

  • Sun, G., T. Fahima, A. Korol, T. Turpeinen, A. Grama, Y. Ronin & E. Nevo., 1997. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 95: 622–628.

    Google Scholar 

  • Tanksley, S.D. & S.R. McCouch., 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063–1066.

    Google Scholar 

  • Valdes, B., V.H. Heywood, F.M. Raimondo & D. Zohary (eds.) 1997. Proceedings of theWorkshop on 'Conservation of theWild Relatives of European Cultivated Plants'. Azienda Foreste Demaniali della Regione Siciliana.

  • Weining, S. & R.J. Henry., 1995. Molecular analysis of the DNA polymorphism of wild barley (Hordeum spontaneum) germplasm using the polymerase chain reaction. Genet. Res. Crop Evol. 42: 273–281.

    Google Scholar 

  • Williams, J.T., 1997. Technical and political factors constraining reserve placement. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes, (Eds), Plant Genetic Conservation. The in situ Approach, pp. 88–98, Chapman and Hall.

  • Wilson, E.O., 1989. Threats to biodiversity. Scient. Amer. September 1989, pp. 60–66.

  • Wilson, E.O., 1992. The Diversity of Life. Harvard Univ. Press, Cambridge, MA.

    Google Scholar 

  • Wilson, E.O. & F.M. Petter., 1988. Biodiversity. Natl. Academy Press, Washington, DC.

    Google Scholar 

  • Zohary, D., 1970. Center of diversity and centers of origin. In O.H. Frankel & E. Benett editors Genetic Resources in Plants their Exploration and Conservation. Blackwell, Oxford; 33–42.

  • Zohary, D. & M. Hopf., 1988. Domestication of plants in the Old World. Oxford Science Publications, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevo, E. Genetic diversity in wild cereals: regional and local studies and their bearing on conservation ex situ and in situ. Genetic Resources and Crop Evolution 45, 355–370 (1998). https://doi.org/10.1023/A:1008689304103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008689304103

Navigation