Skip to main content
Log in

Fatigue Crack Nucleation at Σ3(1 1 2) Boundary in a Ferritic Stainless Steel

  • Published:
Interface Science

Abstract

The effect of a geometrical relationship between a grain boundary (GB) plane and a tensile axis on intergranular fatigue cracking along Σ3(1 1 2) twin boundaries has been investigated in Fe-30%Cr alloy crystals. Fatigue experiments were carried out on the three kinds of the specimens containing the Σ3(1 1 2) twin boundary. It was found that the fatigue cracking behavior was sensitive to the geometry of the GB plane. In a specimen where both the GB plane and a slip vector lying in the GB plane in adjacent grains are inclined to the tensile axis at 45°, the fatigue cracks were nucleated preferentially along the twin boundary at a stress amplitude of 170 MPa. The specimen with the GB plane normal to the tensile axis showed that the fatigue crack was initiated from a slip band formed within a constituent grain at a stress amplitude of 300 MPa. When the GB plane was inclined to the tensile axis but the slip vector lying in the GB plane was normal to the tensile axis, development of additional slips formed perpendicular to the GB plane were observed at a specific site of the GB. Initiation of intergranular fatigue cracks at the site was recognized at a stress amplitude of 250 MPa. It can be suggested that the GB plane normal to the tensile axis provides the highest fatigue performance among them. The difference in the cracking property among these specimens could be understood in terms of the effective Schmid factor derived from elastically incompatible stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hasson, J.-Y. Boos, I. Herveuval, M. Biscondi, and C. Goux, Surf. Sci. 31, 115 (1972).

    Google Scholar 

  2. M. Yamashita, T. Mimaki, S. Hashimoto, and S. Miura, Phil. Mag. 63, 695 (1991).

    Google Scholar 

  3. M. Yamashita, T. Mimaki, S. Hashimoto, and S. Miura, Phil.Mag. 63, 707 (1991).

    Google Scholar 

  4. J.A. Kargol and D.L. Albright, Metall. Trans. A 8, 27 (1977).

    Google Scholar 

  5. L.C. Lim, Acta Metall. 35, 1653 (1987).

    Google Scholar 

  6. D. Wolf, Phil. Mag. A 62, 447 (1990).

    Google Scholar 

  7. J.B. Brosses, R. Fillit, and M. Biscondi, Scripta Metall. 15, 619 (1981).

    Google Scholar 

  8. H. Kurishita, A. Ohishi, H. Kubo, and H. Yoshinaga, Trans. JIM 26, 345 (1985).

    Google Scholar 

  9. W. Liu, M. Bayerlein, H. Mughrabi, A. Day, and P.N. Quested, Acta Metall. 40, 1763 (1992).

    Google Scholar 

  10. R. Lombard, H. Vehoff, and P. Neumann, Z. Metallkd 83, 463 (1992).

    Google Scholar 

  11. A. Vinogradov, T. Mimaki, and S. Hashimoto, Mater. Sci. Eng. A216, 30 (1996).

    Google Scholar 

  12. H. Mughrabi and Ch. Wüthrich, Phil. Mag. 33, 963 (1976).

    Google Scholar 

  13. T. Magnin and J.H. Driver, Mater. Sci. Eng. 39, 175 (1979).

    Google Scholar 

  14. Z. Wang and H. Margolin, Metall. Trans. 16A, 873 (1985).

    Google Scholar 

  15. A. Heinz and P. Neumann, Acta Metall. 38, 1933 (1990).

    Google Scholar 

  16. J. Waltersdolf and H. Vehoff, Scripta Metall. 81, 702 (1990).

    Google Scholar 

  17. Y. Kaneko, S. Hashimoto, and S. Muira, Phil. Mag. Lett. 72, 297 (1995).

    Google Scholar 

  18. S. Hashimoto and Y. Kaneko, Proceeding of JIMS-8, 471 (1996).

  19. R.C. Boettner, A.J. McEvily, Jr., and Y.C. Liu, Phil.Mag. 10, 95 (1964).

    Google Scholar 

  20. Y. Kaneko, S. Hashimoto, T. Mimaki, and S. Miura, Proceedings of ICSMA10, 513 (1994).

  21. Y. Kaneko, T. Mimaki, and S. Hashimoto, Mater. Sci. Eng. A145, 233 (1998).

    Google Scholar 

  22. L. Llanes and C. Laird, Mater. Sci. Eng. A157, 21 (1992).

    Google Scholar 

  23. J.P. Hirth, Metall. Trans. 3, 3047 (1972).

    Google Scholar 

  24. P. Neumann and A. Tönnessen, Proceedings of the Third International Conference on Fatigue and Fatigue Thresholds 3,(1987).

  25. T. Wada, H. Yamada, S. Hashimoto, and S. Miura, Proceedings of iib'96, 511 (1996).

  26. R. Masumoto and N. Kikuchi, J. Jap. Inst. Metals 34, 850 (1970).

    Google Scholar 

  27. J.D. Livingston and B. Chalmers, Acta Metall. 5, 322 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, S., Ikehata, H., Kato, A. et al. Fatigue Crack Nucleation at Σ3(1 1 2) Boundary in a Ferritic Stainless Steel. Interface Science 7, 159–171 (1999). https://doi.org/10.1023/A:1008739820261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008739820261

Navigation