Skip to main content
Log in

A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

We propose a modification of the classical extragradient and proximal point algorithms for finding a zero of a maximal monotone operator in a Hilbert space. At each iteration of the method, an approximate extragradient-type step is performed using information obtained from an approximate solution of a proximal point subproblem. The algorithm is of a hybrid type, as it combines steps of the extragradient and proximal methods. Furthermore, the algorithm uses elements in the enlargement (proposed by Burachik, Iusem and Svaiter) of the operator defining the problem. One of the important features of our approach is that it allows significant relaxation of tolerance requirements imposed on the solution of proximal point subproblems. This yields a more practical proximal-algorithm-based framework. Weak global convergence and local linear rate of convergence are established under suitable assumptions. It is further demonstrated that the modified forward-backward splitting algorithm of Tseng falls within the presented general framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender, A.: Numerical methods for nondifferentiable convex optimization, Math.Programming Study 30(1987), 102–126.

    Google Scholar 

  2. Burachik, R. S., Iusem, A. N. and Svaiter, B. F.: Enlargement of monotone operators with applications to variational inequalities, Set-Valued Anal. 5(1997), 159–180.

    Google Scholar 

  3. Burachik, R. S., Sagastizábal, C. A. and Svaiter, B. F.: "-Enlargements of maximal monotone operators: Theory and applications, in: M. Fukushima and L. Qi (eds), Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Acad. Publ., 1999, pp. 25–44.

  4. Burke, J. V. and Qian, M.: A variable metric proximal point algorithm for monotone operators, SIAM J.Control Optim. 37(1998), 353–375.

    Google Scholar 

  5. Chen, H.-G.: Forward-backward splitting techniques: Theory and applications, PhD Thesis, University of Washington, Seattle, Washington, December 1994.

    Google Scholar 

  6. Chen, X. and Fukushima, M.: Proximal quasi-Newton methods for nondifferentiable convex optimization, Math.Programming (1999), to appear.

  7. Cominetti, R.: Coupling the proximal point algorithm with approximation methods, J.Optim. Theory Appl. 95(1997), 581–600.

    Google Scholar 

  8. Eckstein, J.: Approximate iterations in Bregman-function-based proximal algorithms, Math. Programming 83(1998), 113–123.

    Google Scholar 

  9. Eckstein, J. and Bertsekas, D. P.: On the Douglas- Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math.Programming 55(1992), 293–318.

    Google Scholar 

  10. Ferris, M. C.: Finite termination of the proximal point algorithm, Math.Programming 50 (1991), 359–366.

    Google Scholar 

  11. Gabay, D.: Applications of the method of multipliers to variational inequalities, in: M. Fortin and R. Glowinski (eds), Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, North-Holland, 1983, pp. 299–331.

  12. Georgiev, P. Gr.: Submonotone mappings in Banach spaces and applications, Set-Valued Anal. 5(1997), 1–35.

    Google Scholar 

  13. Güler, O.: New proximal point algorithms for convex minimization, SIAM J.Optim. 2(1992), 649–664.

    Google Scholar 

  14. Korpelevich, G. M.: The extragradient method for finding saddle points and other problems, Matecon 12(1976), 747–756.

    Google Scholar 

  15. Lemaire, B.: The proximal algorithm, in: dJ. P. Penot (ed.), New Methods of Optimization and Their Industrial Use, Internat. Ser. Numer. Math. 87, Birkhäuser, Basel, 1989, pp. 73–87.

    Google Scholar 

  16. Lions, P. L. and Mercier, B.: Splitting algorithms for the sum of two nonlinear operators, SIAM J.Numer.Anal. 16(1979), 964–979.

    Google Scholar 

  17. Luque, F. J.: Asymptotic convergence analysis of the proximal point algorithm, SIAMJ.Control Optim. 2 2 (1984), 277–293.

  18. Martinet, B.: Regularisation d'inequations variationelles par approximations successives, Revue Française d'Informatique et de Recherche Opérationelle 4(1970), 154–159.

    Google Scholar 

  19. Minty, G. J.: Monotone (nonlinear) operators in Hilbert space, Duke Math.J. 29(1962), 341–346.

    Google Scholar 

  20. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull.Amer.Math.Soc. 73(1967), 591–597.

    Google Scholar 

  21. Passty, G. B.: Weak convergence theorems for nonexpansive mappings in Banach spaces, J.Math.Anal.Appl. 67(1979), 274–276.

    Google Scholar 

  22. Qi, L. and Chen, X.: A preconditioning proximal Newton method for nondifferentiable convex optimization, Technical Report AMR 95/20, Department of Applied Mathematics, University of New South Wales, Sydney, SW, Australia, 1995.

    Google Scholar 

  23. Rockafellar, R. T.: On the maximality of sums of nonlinear monotone operators, Trans.Amer. Math.Soc. 149(1970), 75–88.

    Google Scholar 

  24. Rockafellar, R. T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math.Oper.Res. 1(1976), 97–116.

    Google Scholar 

  25. Rockafellar, R. T.: Monotone operators and the proximal point algorithm, SIAM J.Control Optim. 14(1976), 877–898.

    Google Scholar 

  26. Solodov, M. V. and Svaiter, B. F.: A new projection method for variational inequality problems, SIAM J.Control Optim. 37(1999), 765–776.

    Google Scholar 

  27. Solodov, M. V. and Svaiter, B. F.: Forcing strong convergence of proximal point iterations in a Hilbert space, Math.Programming (1997), to appear.

  28. Solodov, M. V. and Svaiter, B. F.: A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima and L. Qi (eds), Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Acad. Publ., Dordrecht, 1999, pp. 355–369.

    Google Scholar 

  29. Solodov, M. V. and Svaiter, B. F.: An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions, Math.Oper.Res. (1998), to appear.

  30. Solodov, M. V. and Svaiter, B. F.: A hybrid projection - proximal point algorithm, J.Convex Anal. 6( 1)(1999).

    Google Scholar 

  31. Spingarn, J. E.: Submonotone subdifferentials of Lipschitz functions, Trans.Amer.Math.Soc. 264(1981), 77–89.

    Google Scholar 

  32. Tossings, P.: The perturbed proximal point algorithm and some of its applications, Appl.Math. Optim. 29(1994), 125–159.

    Google Scholar 

  33. Tseng, P.: Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming, Math.Programming 48(1990), 249–263.

    Google Scholar 

  34. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J.Control Optim. 29(1991), 119–138.

    Google Scholar 

  35. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings, Department of Mathematics, University of Washington, Seattle, WA, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solodov, M.V., Svaiter, B.F. A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator. Set-Valued Analysis 7, 323–345 (1999). https://doi.org/10.1023/A:1008777829180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008777829180

Navigation