Skip to main content
Log in

Synthesis and Characterization of a Polycrystalline Ionic Thin Film by Large-Scale Molecular-Dynamics Simulation

  • Published:
Interface Science

Abstract

A simulation methodology for the synthesis of polycrystalline, ionic thin films is developed. The method involves the preparation of a polycrystalline substrate onto which a thin film is subsequently grown by crystallization from the melt. A detailed structural analysis of a textured sixteen-grain FeO film, with a grain size of approximately 4.7 nm, shows that the interiors of the grains are almost perfect single crystals with only a very few vacancies and no interstitials. The grains are delineated by 〈001〉 tilt grain boundaries; as expected, the low-angle grain boundaries in the film consist of arrays of dislocations, while the high-angle grain boundaries are relatively narrow and well ordered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Weppner and H. Schubert, in Advances in Ceramics; Vol. 24: Science and Technology of Zirconia III, edited by S. Somiya, N. Yamamoto, and H. Yanagida (The American Ceramic Society, Inc., Westerville, OH, 1988), p. 837.

    Google Scholar 

  2. S.P.S. Badwal and J. Dernnan, J. Mater. Sci. 22, 1231 (1987).

    Google Scholar 

  3. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).

    Google Scholar 

  4. D.K. Fork, F. Armani-Leplingards, and J.J. Kingston, MRS Bulletin 21, 53 (1996).

    Google Scholar 

  5. O. Auciello, J.F. Scott, and R. Ramesh, Physics Today 51, 21 (1998).

    Google Scholar 

  6. W.P. Parks, W.Y. Lee, and I.G. Wright, Proceedings of the Thermal Barrier Coating Workshop, Westlake, OH (1995) (DOE Report Conf-9503150-1).

  7. Conference on Lattice Defects in Ionic Crystals, J. de Physiq. Colloq. 6, 1980.

  8. H. Ogawa, F. Wakai, and Y. Waseda, Molec. Sim. 18, 179 (1996).

    Google Scholar 

  9. R. Kalia, A. Nakano, K. Tsuruta, and P. Vashishta, Phys. Rev. Lett. 78, 689 (1997).

    Google Scholar 

  10. L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325 (1987).

    Google Scholar 

  11. J. Greengard, Science 265, 909 (1994).

    Google Scholar 

  12. H.Y. Wang and R. LeSar, J. Chem. Phys. 105, 4173 (1996).

    Google Scholar 

  13. D. Wolf, P. Keblinski, S.R. Phillpot, and J. Eggebrecht, J. Chem. Phys, in press.

  14. S.R. Phillpot, D. Wolf, and H. Gleiter, J. Appl. Phys. 78, 847 (1995).

    Google Scholar 

  15. P. Keblinski, D. Wolf, S.R. Phillpot, and H. Gleiter, Scripta Metall. (1998), submitted.

  16. P. Keblinski, S.R. Phillpot, D. Wolf, and H. Gleiter, Acta Mater. 45, 987 (1997).

    Google Scholar 

  17. P.P. Ewald, Ann. Physik 64, 253 (1921).

    Google Scholar 

  18. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Oxford Scientific Publications, Oxford, 1987).

    Google Scholar 

  19. J.P. Hansen and I.R. McDonald, Phys. Rev. A 11, 2111 (1975).

    Google Scholar 

  20. H.M. Evjen, Phys. Rev. 39, 672 (1932).

    Google Scholar 

  21. C. Kittel, Introduction to Solid State Physics, 3rd edition (Wiley and Sons, New York, 1967), pp. 94–96.

    Google Scholar 

  22. J.H.R. Clarke, W. Smith, and L.V. Woodcock, J. Chem. Phys. 84, 2230 (1984).

    Google Scholar 

  23. L.V. Woodcock, Advances in Moleten Salt Chemistry, Vol. 3, edited by B.J.G. Mamantov and G.P. Smith (Plenum, New York, 1975), p. 1.

    Google Scholar 

  24. D. Wolf, Phys. Rev. Lett. 68, 3315 (1992).

    Google Scholar 

  25. D. Wolf, Springer Proc. in Physics 80, 57 (1995).

    Google Scholar 

  26. D.E. Parry, Surf. Sci. 49, 433 (1975).

    Google Scholar 

  27. D. Fincham, Molec. Simul. 13, 1 (1994).

    Google Scholar 

  28. R. Dieckmann, J. Phys. Chem. Sol. 59, 507 (1998).

    Google Scholar 

  29. M.J.L. Sangster and A.M. Stoneham, Phil. Mag. B 43, 597 (1981).

    Google Scholar 

  30. C.R.A. Catlow, W.C. Mackrodt, M.J. Norgett, and A.M. Stoneham, Phil. Mag. 35, 177 (1977).

    Google Scholar 

  31. C.R.A. Catlow and B.E.F. Fender, Phil. Mag. 8, 3267 (1975).

    Google Scholar 

  32. C.R.A. Catlow, B.E.F. Fender, and D.G. Muxworthy, J. de Phys. Colloq C7, C7, 67 (1977).

    Google Scholar 

  33. M. Parrinello and A. Rahman, Journal of Applied Physics 52, 7182 (1981).

    Google Scholar 

  34. C.R.A. Catlow, I.D. Faux, and M.J. Norgett, J. Phys. C 9, 419 (1976).

    Google Scholar 

  35. W.C. Mackrodt and R.F. Stewart, J. Phys. C 12, 431 (1979).

    Google Scholar 

  36. See for example and P.A. Cox, Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (Oxford University Press, Oxford, 1995), Vol. 27.

    Google Scholar 

  37. F.C. Frank, Symposium on the Plastic Deformation of Crystalline Solids (Office of Naval Research, Pittsburgh, PA, 1950).

    Google Scholar 

  38. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1995).

    Google Scholar 

  39. K.L. Merkle and D.J. Smith, Ultramicroscopy 22, 57070 (1987).

    Google Scholar 

  40. F.C. Frank, Physica 15, 131 (1949).

    Google Scholar 

  41. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd edition (John Wiley, New York, 1982).

    Google Scholar 

  42. K.L. Merkle and D.J. Smith, Phys. Rev. Lett. 59, 2887 (1987).

    Google Scholar 

  43. D.M. Duffy and P.W. Tasker, Phil. Mag. A 47, 817 (1983).

    Google Scholar 

  44. D. Wolf, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992).

    Google Scholar 

  45. K.L. Merkle, Interface Science 2, 311 (1995).

    Google Scholar 

  46. D.M. Duffy and P.W. Tasker, Phil. Mag. A 50, 143 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillpot, S., Keblinski, P., Wolf, D. et al. Synthesis and Characterization of a Polycrystalline Ionic Thin Film by Large-Scale Molecular-Dynamics Simulation. Interface Science 7, 15–31 (1999). https://doi.org/10.1023/A:1008782230777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008782230777

Navigation