Skip to main content
Log in

Fatigue Crack Propagation in Copper Bicrystals Having the Grain Boundaries of Σ3 Vicinal Domain

  • Published:
Interface Science

Abstract

The criterion for occurrence of intergranular fatigue cracking in copper has been investigated from the view point of both the grain boundary (GB) character and the cyclic deformation property of constituent grains. The copper bicrystals were prepared to have several orientation relationships close to Σ3(1 1 1) coherent twin (Σ3 vicinal domain) so as to change the GB character rapidly with increasing deviation angles |Δθ| from the Σ3 relation. These bicrystals were shaped to single-edge-notched specimens in which a GB plane was perpendicular to the tensile axis. The fatigue crack propagation tests were carried out in air at room temperature. The specimens having deviation angles |Δθ| less than 3° involved no intergranular fatigue cracking. When the |Δθ| values were ranged from 3° to 5°, the ratio of the intergranular cracking increased. In the specimens having the |Δθ| values more than 9°, the intragranular cracking became predominate again. The increase in the intergranular cracking with increasing deviation angle at the |Δθ| values less than 5° could be understood in terms of the increasing GB susceptibility to the GB damage due to air environment. On the other hand, the intragranular cracking at the |Δθ| values more than 9° could be attributed to the formation of the persistent slip bands in the constituent grains and subsequent crack propagation preferentially along them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Boettner, A.J. McEvily, Jr., and Y.C. Liu, Phil. Mag. 10, 95 (1964).

    Google Scholar 

  2. L.C. Lim, Acta Metall. 35(10), 1653 (1987).

    Google Scholar 

  3. A. Heinz and P. Neumann, Acta Metall. 38, 1933 (1990).

    Google Scholar 

  4. J. Waltersdolf and H. Vehoff, Scripta Metall. 81, 702 (1990).

    Google Scholar 

  5. W. Liu, M. Bayerlein, H. Mughrabi, A. Day, and P.N. Quested, Acta Metall. Mater. 40, 1763 (1992).

    Google Scholar 

  6. Y. Kaneko, S. Hashimoto, and S. Muira, Phil. Mag. Lett. 72, 297 (1995).

    Google Scholar 

  7. S. Hashimoto and Y. Kaneko, Proceeding of iib 96 (1996), p. 471.

  8. H. Mughrabi and Ch. Wüthrich, Phil. Mag. 33, 963 (1976).

    Google Scholar 

  9. T. Magnin and J.H. Driver, Mater. Sci. Eng. 39, 175 (1979).

    Google Scholar 

  10. R. Lombard, H. Vehoff, and P. Neumann, Z. Metallkd 83, 463 (1992).

  11. A. Vinogradov, T. Mimaki, and S. Hashimoto, Mater. Sci. Eng. A216, 30 (1996).

    Google Scholar 

  12. T. Watanabe, M. Yamada, S. Shima, and S. Karashima, Phil. Mag. A40, 667 (1979).

    Google Scholar 

  13. G. Hasson, J.-Y. Boos, I. Herveuval, M. Biscondi, and C. Goux, Surf. Sci. 31, 115 (1972).

    Google Scholar 

  14. M. Yamashita, T. Mimaki, S. Hashimoto, and S. Miura, Phil. Mag. 63, 695 (1991).

    Google Scholar 

  15. H. Vehoff, H. Stenzel, and P. Neumann, Z. Metallkd 78, 550 (1987).

    Google Scholar 

  16. G. Hasson and C. Goux, Scripta Metall. 5, 889 (1971).

    Google Scholar 

  17. H. Miura, M. Kato, and T. Mori, Colloque de Physique 51, C1–263 (1990).

    Google Scholar 

  18. W. Bollmann, Crystal Lattice, Interfaces, Matrices (Geneva, 1982), p. 53.

  19. W.F. Brown, Jr. and J. Srawley, ASTM STP 410, 1 (1966).

    Google Scholar 

  20. P. Neumann, Acta Metall. 17, 1219 (1969).

    Google Scholar 

  21. P. Neumann, Acta Metall. 22, 1155 (1974).

    Google Scholar 

  22. I. Herveuval, M. Biscondi, and C. Goux, Mem. Sci. Rev. Mat. 70, 39 (1973).

    Google Scholar 

  23. T.K. Lepistö, V.-T. Kuokkala, and P. Kettunen, Mater. Sci. Eng. 81, 457 (1986).

    Google Scholar 

  24. S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 1991), p. 43.

    Google Scholar 

  25. Z.S. Basinski and S.J. Basinski, Scripta Metall. 18, 851 (1984).

    Google Scholar 

  26. A. Hunsch and P. Neumann, Acta Metall. 34, 207 (1986).

    Google Scholar 

  27. T. Lepistö, V.-T. Kuokkala, and P. Kettunen, Scripta Metall. 18, 245 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, Y., Kitagawa, K. & Hashimoto, S. Fatigue Crack Propagation in Copper Bicrystals Having the Grain Boundaries of Σ3 Vicinal Domain. Interface Science 7, 147–158 (1999). https://doi.org/10.1023/A:1008787703423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008787703423

Navigation