Skip to main content
Log in

Relationship between Electrical Activity and Grain Boundary Structural Configuration in Polycrystalline Silicon

  • Published:
Interface Science

Abstract

Temperature dependent electron beam induced current (EBIC) technique has been applied to investigate the electrical activities of grain boundaries (GBs) in polycrystalline silicon. The GB character, misorientation and orientation of GB plane, were analyzed using a FE-SEM/EBSP/OIM system prior to the EBIC measurements. The EBIC contrasts were found to depend on GB character; low ΣGBs showed weak contrasts compared with general GBs at any temperatures, and also demonstrated to vary at GB irregularities such as boundary steps. These results indicate that electrical properties depend on the orientation of the GB plane as well as the misorientation. On the other hand, there existed less differences in temperature dependence of EBIC contrast irrespective of GB characters. The EBIC contrast decreased with increasing temperature, showed a minimum around 250 K, then increased again with further increasing temperature. The resulting temperature dependence of EBIC contrast probably comes from the combination of two types of recombination processes of carriers. One is related to a shallow level associated with an inherent GB structure, though the exact energy levels also would probably depend on GB structures, and the other to a deep level associated with impurities segregated at GBs, which acts as recombination center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Moller, Progress in Materials Science 35, 205 (1991).

    Google Scholar 

  2. K. Yang, G.H. Schwuttke, and T.F. Ciszek, J. Crystal Growth 50, 301–310 (1980).

    Google Scholar 

  3. H.F. Matare, J. Appl. Phys. 56, 2605–2631 (1984).

    Google Scholar 

  4. I. Nakamichi, J. Sci. Hiroshima Univ. A54, 49–84 (1990).

    Google Scholar 

  5. G. Poullain, A. Bary, B. Mercey, P. Lay, J.-L. Chermant, and G. Nouet, Proc. of JIMS-4, Trans. Jpn. Inst. Met. Suppl. 27, 1069–1076 (1986).

    Google Scholar 

  6. A. Buis, Y.-S. Oei, and F.W. Schapink, Proc. of JIMS-4, Trans. Jpn. Inst. Met. Suppl. 27, 221–228 (1986).

    Google Scholar 

  7. K. Kaneko, J. Masuda, and K. Tabata, Bull. Jpn. Inst. Met. 28, 664–671 (1989).

    Google Scholar 

  8. R. Rizk and G. Nouet, Interface Sci. 4, 303–316 (1997).

    Google Scholar 

  9. A. Fedotov, B. Evtodyi, L. Fionova, Yu. Ilyashuk, E. Katz, and L. Polyak, Phys. Stat. Sol. (a) 119, 523–534 (1990).

    Google Scholar 

  10. A. Fedotov, B. Evtodyi, L. Fionova, Yu. Ilyashuk, E. Katz, and L. Polyak, J. Crystal Growth 104, 186–190 (1990).

    Google Scholar 

  11. S. Kusanagi, T. Sekiguchi, B. Shen, and K. Sumino, Mater. Sci. Tech. 11, 685–690 (1995).

    Google Scholar 

  12. B. Shen, S. Kusanagi, J. Jablonski, and K. Sumino, J. Appl. Phys. 76, 4540–4546 (1994).

    Google Scholar 

  13. Z.J. Radzinski, T.Q. Zhou, A. Buczkowski, G.A. Rozonyi, D. Flinn, L.G. Hellwig, and J.A. Ross, Appl. Phys. Lett. 60, 1096–1098 (1992).

    Google Scholar 

  14. V. Randle, The Measurement of Grain Boundary Geometry (Institute of Physics Publishing, Bristol and Philadelphia, 1993), pp. 86–89.

    Google Scholar 

  15. A.V. Andreyeva, G.I. Salnikov, and L.K. Fionova, Acta Met. 26, 1331–1336 (1978).

    Google Scholar 

  16. T. Sekiguchi and K. Sumino, Rev. Sci. Instrum. 66, 4277–4282 (1995).

    Google Scholar 

  17. X. Zhao, T. Watanabe, K. Hirano, L. Fionova, and Yu. Lisovski, Proc. the 11th Intern. Conf. on Textures of Materials, 1426–1431 (1996).

  18. A. Bary and G. Nouet, J. Appl. Phys. 63, 435–438 (1988).

    Google Scholar 

  19. A.P. Sutton and R.W. Balluffi, Interface in Crystalline Materials (Oxford Science Publications, 1995).

  20. B. Cunningham, H. Strunk, and D. Ast, Appl. Phys. Letters 40, 237–239 (1982).

    Google Scholar 

  21. Y.L. Maurice, Rev. Phys. Applique 22, 613–621 (1987).

    Google Scholar 

  22. A. Ihlal and G. Nouet, in Springer Proceedings in Physics, edited by J.H. Werner, H.J. Moller, and H.P. Strunk (1989), Vol. 35, pp. 77–82.

  23. 0N. Tabet, C. Monty, and Y. Marfaing, in Springer Proceedings in Physics, edited by J.H. Werner, H.J. Moller, and H.P. Strunk (1989), Vol. 35, pp. 89–94.

  24. N.V. Abrosimov, A.V. Bashenov, and V.A. Tatarchenko, J. Crystal Growth 82, 203–208 (1987).

    Google Scholar 

  25. W. Shockley and W.T. Read, Jr., Phys. Rev. 87, 835–842 (1952).

    Google Scholar 

  26. R.N. Hall, Phys. Rev. 87, 387 (1959).

    Google Scholar 

  27. T. Sekiguchi, B. Shen, T. Watanabe, and K. Sumino, Mater. Sci. Eng. B42, 235–239 (1996).

    Google Scholar 

  28. A.T. Paxton and A.P. Sutton, Acta Metall. 37, 1693–1715 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZJ., Tsurekawa, S., Ikeda, K. et al. Relationship between Electrical Activity and Grain Boundary Structural Configuration in Polycrystalline Silicon. Interface Science 7, 197–205 (1999). https://doi.org/10.1023/A:1008796005240

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008796005240

Navigation