Skip to main content
Log in

Dynamic fatigue and degradation in solution of hydroxyapatite ceramics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Polycrystalline hydroxyapatite was densified by hot pressing. The dissolution process in aqueous solution and the effects of environment on dynamic fatigue resistance of the resulting HAP ceramics were investigated. Pure water or Ringer's solution strongly enhances subcritical crack growth. The crack propagation exponent decreases from 22.5±2 in air to 10±4 in Ringer's solution for materials densified at 98% of the theoretical value. The residual porosity ratio is also very detrimental for the mechanical reliability. Both fatigue resistance and immediate fracture strength are decreased, with values of only 14±4 for the propagation exponent and 40 MPa for the tensile strength (compared to 90 MPa at 98% relative density) for materials densified at 94% tested in air. The degradation in solution appears to be governed by uniform physico-chemical dissolution of crystalline HAP phase at the surface of the material. This dissolution is accompanied by a decohesion of grains located around residual pores which leads to the growth of local surface defects. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Heise, J. F. Osborn and F. Duwe Int. Orthopaed. 14 (1990) 329.

    Google Scholar 

  2. H. Oonishi, Biomaterials 12 (1991) 171.

    Google Scholar 

  3. L. L. Hench, J Am. Ceram. Soc 74 (1991) 1487.

    Google Scholar 

  4. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay and R. H. Doremus, J Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  5. M. Akao, H. Aoki and K. Kato, ibid. 16 (1981) 809.

    Google Scholar 

  6. Y. Hirayama, H. Ikata, H. Akiyma, K, Nagamura, S. Ojima and M. Kawakami, in “Sintering 87”, edited by S. Somiya, M. Shimasa, M. Yoshimura and M. Watanabe (Elsevier, New York, 1987) p. 1332.

    Google Scholar 

  7. R. Halouani, D. Bernache-assollant, E. Champion and A. Ababou, J. Mater. Sci. Mater. Med. 5 (1994) 563.

    Google Scholar 

  8. P. van Landuyt, F. Li, J. P. Keustermans, J. M. Streydio, F. Delannay and E. Munting, ibid. 6 (1995) 8.

    Google Scholar 

  9. F. Bisson, P. Gohar and D. Bernache-assollant, in “Euro-ceramics”, Vol. 3, edited by G. De With, R. A. Terpstra, R. Metselaar (Elsevier Applied Science, London, 1989) p. 3.58.

    Google Scholar 

  10. P. Ducheryne, C. S. Kim and S. R. Pollak, J. Biomed. Mater. Res. 26 (1992) 147.

    Google Scholar 

  11. P. Ducheyne, S. Radin and L. King, ibid. 27 (1993) 25.

    Google Scholar 

  12. C. A. Van Blitterswijk, J. J. Grote, K. de Groot, W. T. Daems and W. Kuypers, J Biomed. Mater. Res. 20 (1986) 989.

    Google Scholar 

  13. K. de Groot, in “Bioceramics”, edited by P. Ducheyne and J. Lemons (Annals New York Academy of Science, NY, 1988) p. 227.

    Google Scholar 

  14. M. B. Thomas, R. H. Doremus, M. Jarcho and R. L. Salsbury, J. Mater. Sci. 15 (1980) 891.

    Google Scholar 

  15. G. de With, H. J. A. van Dijk, N. Hattu and K. Prijs, ibid. 16 (1981) 1592.

    Google Scholar 

  16. S. M. Barinov and V. Y. Shevchenko, J. Mater. Sci.Lett. 14 (1995) 582.

    Google Scholar 

  17. T. Nonami and F. Wakai, J. Ceram. Soc. Jpn 103 (1995) 648.

    Google Scholar 

  18. A. G. Evans and H. Johnson, J. Mater. Sci. 10 (1975) 214.

    Google Scholar 

  19. B. R. Lawn, D. B. Marshall, G. R. Anstis and T. P. Dabbs, ibid. 16 (1981) 2846.

    Google Scholar 

  20. B. J. Pletka and S. M. Wiederhorn, ibid. 17 (1982) 1247.

    Google Scholar 

  21. S. M. Wiederhorn, S. W. Freiman, E. R. Fuller Jr and C. J. Simmons, ibid. 17 (1982) 3460.

    Google Scholar 

  22. J. C. Glandus, ibid. 26 (1991) 4667.

    Google Scholar 

  23. A. G. Evans, Int. J. Fract. 10 (1974) 251.

    Google Scholar 

  24. J. E. Ritter Jr and J. N. Humenik, J. Mater. Sci. 14 (1979) 626.

    Google Scholar 

  25. T. Fett and D. Munz, J. Eur. Ceram. Soc. 6 (1990) 67.

    Google Scholar 

  26. C. B., Ponton and R. D. Rawlings, Mater. Sci. Technol. 5 (1989) 865.

    Google Scholar 

  27. M. A. Barbosa, in “Biomaterials degradation”, edited by M. A. Barbosa (Elsevier Science, Amsterdam, 1991) p. 227.

    Google Scholar 

  28. E. C. Moreno, M. Kresak and R. T. Zahradnik, Caries Res. 11 (1977) 142.

    Google Scholar 

  29. H. J. Kleebe, E. F. Bres, D. Bernache-assollant and G. Ziegler, J. Am. Ceram. Soc., 80 (1997) 37.

    Google Scholar 

  30. J. E. Ritter Jr, N. Bandyopadhyay and K. Jakus, ibid. 62 (1979) 542.

    Google Scholar 

  31. A. Royer, J. C. Viguie, M. Heughebaert and J. C. Heughebaert, J. Mater. Sci. Mater. Med. 4 (1993) 76.

    Google Scholar 

  32. S. Gautier, E. Champion and D. Bernacheassollant, J. Eur. Ceram. Soc., accepted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAYNAUD, S., CHAMPION, E., BERNACHE-ASSOLANT, D. et al. Dynamic fatigue and degradation in solution of hydroxyapatite ceramics. Journal of Materials Science: Materials in Medicine 9, 221–227 (1998). https://doi.org/10.1023/A:1008840308094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008840308094

Keywords

Navigation