Skip to main content
Log in

Modelling spatial dynamics of fish

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Our ability to model spatial distributions of fish populations is reviewed by describing the available modelling tools. Ultimate models of the individual's motivation for behavioural decisions are derived from evolutionary ecology. Mechanistic models for how fish sense and may respond to their surroundings are presented for vision, olfaction, hearing, the lateral line and other sensory organs. Models for learning and memory are presented, based both upon evolutionary optimization premises and upon neurological information processing and decision making. Functional tools for modelling behaviour and life histories can be categorized as belonging to an optimization or an adaptation approach. Among optimization tools, optimal foraging theory, life history theory, ideal free distribution, game theory and stochastic dynamic programming are presented. Among adaptation tools, genetic algorithms and the combination with artificial neural networks are described. The review advocates the combination of evolutionary and neurological approaches to modelling spatial dynamics of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, M.V. (1986) Patch choice under perceptual constraints: a cause for departures from the IFD. Behav. Ecol. Sociobiol. 10, 409–415.

    Google Scholar 

  • Ackley, D. and Littman, M. (1992) Interactions between learning and evolution. In Langton, C., Taylor, C., Farmer, J. and Rasmussen, S. ed. Artificial Life II. Reading, MA: Addison-Wesley, pp. 487–509.

    Google Scholar 

  • Aksnes, D.L. and Giske, J. (1990) Habitat profitability in pelagic environments. Mar. Ecol. Prog. Ser. 64, 209–215.

    Google Scholar 

  • Aksnes, D.L. and Giske, J. (1993) A theoretical model of aquatic visual feeding. Ecol. Mod. 67, 233–250.

    Google Scholar 

  • Aksnes, D.L. and Utne, A.C.W. (1997) A revised model of visual range in fish. Sarsia 82, 137–147.

    Google Scholar 

  • Alldredge, A.L. (1984) The quantitative significance of gelatinous zooplankton as pelagic consumers. In Fasham, M.J., ed. Flows of Energy and Material in Marine Ecosystems. Theory and Practice (NATO Conf. Ser. Series IV. Marine Science 13). New York: Plenum Press, pp. 407–433.

    Google Scholar 

  • Anderson, R.W. (1995) Learning and evolution: a quantitative genetics approach. J. Theor. Biol. 175, 89–101.

    Google Scholar 

  • Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N. (eds) (1988) Sensory Biology of Aquatic Animals. New York: Springer Verlag. 936 pp.

    Google Scholar 

  • Baird, R.C. and Jumper, G.W. (1995) Encounter models and deep-sea fishes: numerical simulations and the mate location problem in Sternoptyx diaphana (Pisces, Sternoptychidae). Deep-Sea Res. I, 42, 675–696.

    Google Scholar 

  • Baird, R.C., Johari, H. and Jumper, G.Y. (1996) Numerical simulation of environmental modulation of chemical signal structure and odour dispersal in the open ocean. Chem. Senses 21, 121–134.

    Google Scholar 

  • Balchen, J.G. (1976) Principles of migration in fishes. SINTEF Rapport STF48 A76045, Trondheim, Norway. 33 pp.

  • Beauchamp, G., Belisle, M. and Giraldeau, L.A. (1997) Influence of conspecific attraction on the spatial distribution of learning foragers in a patchy habitat. J. Anim. Ecol. 66, 671–682.

    Google Scholar 

  • Benhamou, S., Bovet, P. and Poucet, B. (1995) A model for place navigation in mammals. J. Theor. Biol. 173, 163–178.

    Google Scholar 

  • Blarer, A. and Doebeli, M. (1996) Heuristic optimisation of the general life history problem. Evol. Ecol. 10, 81–96.

    Google Scholar 

  • Blaxter, J.H.S. and Batty, R.S. (1985) The development of startle responses in herring larvae. J. Mar. Biol. Ass. UK 65, 737–750.

    Google Scholar 

  • Bleckmann, H. (1993) Role of the lateral line in fish behaviour. In Pitcher, T.J., ed. Behaviour of Teleost Fishes, 2nd edn. (Fish and Fisheries Series 7). London: Chapman and Hall, pp. 201–246.

    Google Scholar 

  • Bleckmann, H., Tittel, G. and Blübaum-Gronau, E. (1989) The lateral line system of surface-feeding fish: anatomy, physiology, and behaviour. In Coombs, S., Görner, P. and Münz, H., eds. The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer-Verlag, pp. 501–526.

    Google Scholar 

  • Broekhuizen, N., Gurney, W.S.C., Jones, A. and Bryant, A.D. (1994) Modeling compensatory growth. Funct. Ecol. 8, 770–782.

    Google Scholar 

  • Bush, R.R. and Mosteller, F. (1955) Stochastic Models for Learning. New York: Wiley.

    Google Scholar 

  • Calow, P. and Townsend, C.R. (1981) Energetics, ecology and evolution. In Townsend, C.R. and Calow, P., eds. Physiological Ecology. An Evolutionary Approach to Resource Use. Oxford: Blackwell, pp. 3–19.

    Google Scholar 

  • Caraco, T. (1980) On foraging time allocation in a stochastic environment. Ecology 61, 119–128.

    Google Scholar 

  • Charnov, E.L. (1976) Optimal foraging: the marginal value theorem. Theor. Popul. Biol. 9, 129–136.

    Google Scholar 

  • Clark, C.W. (1993) Dynamic models of behaviour: an extension of life history theory. Trends Ecol. Evol. 8, 205–209.

    Google Scholar 

  • Clark, C.W. and Ekman, J. (1995) Dominant and subordinate fattening strategies — a dynamic game. Oikos 72, 205–212.

    Google Scholar 

  • Clark, C.W. and Levy, D.A. (1988) Diel vertical migration by juvenile sockeye salmon and the antipredation window. Am. Nat. 131, 271–290.

    Google Scholar 

  • Clark, C.W. and Mangel, M. (1986) The evolutionary advantages of group foraging. Theor. Popul. Biol. 30, 45–75.

    Google Scholar 

  • Coombs, S., Görner, P. and Münz, H. (1989) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer Verlag.

    Google Scholar 

  • Craig, R.B., DeAngelis, D.L. and Dixon, K.R. (1979) Long-and short-term dynamic optimisation models with application to the feeding strategy of loggerhead shrike. Am. Nat. 113, 31–51.

    Google Scholar 

  • Dagorn, L., Petit, M. and Stretta, J.M. (1997) Simulation of large-scale tropical tuna movements in relation with daily remote sensing data: the artificial life approach. BioSystems 44, 167–180.

    Google Scholar 

  • Dagorn, L., Petit, M., Stretta, J.M., Bernardet, X. and Ramos, A.G. (1995) Towards a synthetic ecoethology of tropical tunas. Sci. Mar. 59, 335–346.

    Google Scholar 

  • D'Angelo, D.J., Howard, L.M., Meyer, J.L., Gregory, S.V. and Ashkenas, L.R. (1995) Ecological uses for genetic algorithms: predicting fish distributions in complex physical habitats. Can. J. Fish. Aquat. Sci. 52, 1893–1908.

    Google Scholar 

  • Davis, L. (1991) Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold. 385 pp.

    Google Scholar 

  • Dawkins, R. (1976) The Selfish Gene, 2nd edn. (1989) Oxford: Oxford University Press. 352 pp.

    Google Scholar 

  • Dawkins, R. (1995) River out of Eden. London: Weidenfeld and Nicolson. 172 pp.

    Google Scholar 

  • DeAngelis, D.L. and Gross, L.J. (1992) Individual-based Models and Approaches in Ecology: Populations, Communities and Ecosystems. New York: Chapman and Hall. 525 pp.

    Google Scholar 

  • Dower, J.F., Miller, T.J. and Leggett, W.C. (1997) The role of microscale turbulence in the feeding ecology of larval fish. Adv. Mar. Biol. 31, 169–220.

    Google Scholar 

  • Dunbrack, R.L. and Dill, L.M. (1984) Three-dimensional prey reaction field of the juvenile coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 41, 1176–1182.

    Google Scholar 

  • Ebenman, B. and Persson, L. (eds) (1988) Size-structured Populations. Berlin: Springer Verlag.

    Google Scholar 

  • Eiane, K., Aksnes, D.L. and Giske, J. (1997) The significance of optimal properties in competition among visual and tactile planktivores: a theoretical study. Ecol. Mod. 98, 123–136.

    Google Scholar 

  • Ekeberg, Ö., Griller, S. and Lansner, A. (1995) The neural control of fish swimming studied through numerical simulations. Adapt. Behav. 3, 363–384.

    Google Scholar 

  • Emlen, J.M. (1966) The role of time and energy in food preference. Am. Nat. 100, 611–617.

    Google Scholar 

  • Euler, L. (1760) Recherches générales sur la mortalité: la multiplication du genre humain. Mem. Acad. Sci. Berlin 16, 144–164.

    Google Scholar 

  • Fernø, A., Pitcher, T.J., Melle, W., Nøttestad, L., Mackinson, S., Hollingworth, C. and Misund, O.A. (1998) The challenge of the herring in the Norwegian Sea: making optimal collective spatial decisions. Sarsia 83, 00–00 (in press)

    Google Scholar 

  • Fiksen, Ø. (1997) Diel vertical migration and allocation patterns — modelling the optimal Daphnia. Ecology 78, 1446–1456.

    Google Scholar 

  • Fiksen, Ø. and Carlotti, F. (1998) A model of optimal life history and diel vertical migration in Calanus finmarchicus. Sarsia 83, 00–00 (in press)

    Google Scholar 

  • Fiksen, Ø. and Giske, J. (1995) Vertical distribution and population dynamics of copepods by dynamic optimisation. ICES J. Mar. Sci. 52, 483–503.

    Google Scholar 

  • Fiksen, Ø., Giske, J. and Slagstad, D. (1995) A spatially explicit fitness-based model of capelin migrations in the Barents Sea. Fish. Oceanogr. 4, 193–208.

    Google Scholar 

  • Fisher, R.A. (1930) The Genetical Theory of Natural Selection. Oxford: Clarendon.

    Google Scholar 

  • Fleming, R.H. (1939) The control of diatom populations by grazing. J. Cons. Perm. Explor. Mer 14, 210–227.

    Google Scholar 

  • Fransz, H.G., Mommaerts, J.P. and Radach, G. (1991) Ecological modelling of the North Sea. Neth. J. Sea Res. 28, 67–140.

    Google Scholar 

  • Fretwell, S.D. (1972) Populations in a Seasonal Environment. Princeton: Princeton University Press.

    Google Scholar 

  • Fretwell, S.D. and Lucas, H.J. Jr (1970) On territorial behaviour and other factors influencing habitat distributions in birds. 1. Theoretical development. Acta Biotheor. 19, 16–36.

    Google Scholar 

  • Gabriel, W. and Thomas, B. (1988a) The influence of food availability, predation risk, and metabolic costs on the evolutionary stability of diel vertical migration in zooplankton. Verh. Internat. Verein. Limnol. 23, 807–811.

    Google Scholar 

  • Gabriel, W. and Thomas, B. (1988b) Vertical migration of zooplankton as an evolutionarily stable strategy. Am. Nat. 132, 199–216.

    Google Scholar 

  • Gerritsen, J. and Strickler, J.R. (1977) Encounter probabilities and community structure in zooplankton: a mathematical model. J. Fish. Res. Bd Can. 34, 73–82.

    Google Scholar 

  • Gilliam, J.F. (1990) Hunting by the hunted: optimal prey selection by foragers under predation hazard. In Hughes, R.N., ed. Behavioural Mechanisms of Food Selection (NATO ASI Series, Vol. G 20). Berlin: Springer-Verlag, pp. 797–819.

    Google Scholar 

  • Gilliam, J.F. and Fraser, D.F. (1988) Resource depletion and habitat segregation by competitors under predation hazard. In Ebenman, B. and Persson, L., eds. Size-structured Populations — Ecology and Evolution. Berlin: Springer-Verlag, pp. 173–184.

    Google Scholar 

  • Giske, J. and Aksnes, D.L. (1992) Ontogeny, season and trade-offs: vertical distribution of the mesopelagic fish Maurolicus muelleri. Sarsia 77, 253–261.

    Google Scholar 

  • Giske, J., Aksnes, D.L. and Fiksen, Ø. (1994) Visual predators, environmental variables and zooplankton mortality risk. Vie Milieu 44, 1–9.

    Google Scholar 

  • Giske, J., Aksnes, D.L. and Førland, B. (1993) Variable generation times and Darwinian fitness measures. Evol. Ecol. 7, 233–239.

    Google Scholar 

  • Giske, J., Rosland, R., Berntsen, J. and Fiksen, Ø. (1997) Ideal free distribution of copepods under predation risk. Ecol. Model. 95, 45–59.

    Google Scholar 

  • Giske, J. and Salvanes, A.G.V. (1995) Why pelagic planktivores should be unselective feeders. J. Theor. Biol. 173, 41–50.

    Google Scholar 

  • Gleitman, H. and Rozin, P. (1971) Learning and memory. In Hoar, W.S. and Randall, D.J., eds. Fish Physiology, Vol. 6. New York: Academic Press, pp. 191–278.

    Google Scholar 

  • Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimisation and Machine Learning. Reading: Addison-Wesley. 412 pp.

    Google Scholar 

  • Gomez, F. and Miikkulainen, R. (1997) Incremental evolution of complex general behaviour. Adapt. Behav. 5, 317–342.

    Google Scholar 

  • Guthrie, D.M. and Muntz, W.R.A. (1993) Role of vision in fish behaviour. In Pitcher, T.J., ed. Behaviour of Teleost Fishes, 2nd edn. (Fish and Fisheries Series 7). London: Chapman and Hall, pp. 89–128.

    Google Scholar 

  • Håkanson, L. (1995) Optimal size of predictive models. Ecol. Mod. 78, 195–204.

    Google Scholar 

  • Hallam, B.E., Halperin, J.R.P. and Hallam, J.C.T. (1994) An ethological model for implementation in mobile robots. Adapt. Behav. 3, 51–79.

    Google Scholar 

  • Hamilton, W.D. (1964) The genetical evolution of social behaviour. J. Theor. Biol 7, 1–52.

    Google Scholar 

  • Hara, T.J. (1993) Role of olfaction in fish behaviour. In Pitcher, T.J., ed. Behaviour of Teleost Fishes, 2nd edn (Fish and Fisheries Series 7). London: Chapman and Hall, pp. 170–199.

    Google Scholar 

  • Harley, C.B. (1981) Learning the evolutionary stable strategy. J. Theor. Biol. 89, 611–634.

    Google Scholar 

  • Hart, P.J.B. (1993) Teleost foraging: facts and theories. In Pitcher, T.J., ed. Behaviour of Teleost Fishes, 2nd edn (Fish and Fisheries Series 7). London: Chapman and Hall, pp. 253–284.

    Google Scholar 

  • Hawkins, A.D. (1993) Underwater sound and fish behaviour. In Pitcher, T.J., ed. Behaviour of Teleost Fishes, 2nd edn (Fish and Fisheries Series 7). London: Chapman and Hall, pp. 129–169.

    Google Scholar 

  • Henson, S.M. and Hallam, T.G. (1995) Optimal feeding via constrained processes. J. Theor. Biol. 176, 33–37.

    Google Scholar 

  • Hilborn, R. and Mangel, M. (1997) The Ecological Detective. Confronting Models with Data (Monographs in Population Biology 28). Princeton: Princeton University Press. 315 pp.

    Google Scholar 

  • Hinton, G.E. and Nowlan, S.J. (1987) How learning can guide evolution. Complex systems 1, 495–502.

    Google Scholar 

  • Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press. 183 pp.

    Google Scholar 

  • Holling, C.S. (1959) Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398.

    Google Scholar 

  • Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective properties. Proc. Natn. Acad. Sci., USA 79, 2554–2558.

    Google Scholar 

  • Houston, A., Clark, C., McNamara, J. and Mangel, M. (1988) Dynamic models in behavioural and evolutionary ecology. Nature 332, 29–34.

    Google Scholar 

  • Hugie, D.M. and Dill, L.M. (1994) Fish and game: a game theoritic approach to habitat selection by predators and prey. J. Fish Biol. 45(Suppl. A), 151–169.

    Google Scholar 

  • Huse, G. and Giske, J. (1998) Ecology in Mare Pentium: an individual based spatio temporal model for fish with adapted behaviour. Fisheries Res. (in press)

  • Huston, M., DeAngelis, D. and Post, W. (1988) New computer models unify ecological theory. Bioscience 38, 682–691.

    Google Scholar 

  • Huth, A. and Wissel, C. (1994) The simulation of fish schools in comparison with experimental data. Ecol. Mod. 75/76, 135–145.

    Google Scholar 

  • Iwasa, Y. (1982) Vertical migration of zooplankton: a game between predator and prey. Am. Nat. 120, 171–180.

    Google Scholar 

  • Jachner, A. (1995a) Chemically induced habitat shifts in bleak (Alburnus alburnus L.). Arch. Hydrobiol. 133, 71–79.

    Google Scholar 

  • Jachner, A. (1995b) Changes in feeding behaviour of bleak (Alburnus alburnus L.) in response to visual and chemical stimuli from predators. Arch. Hydrobiol. 133, 305–314.

    Google Scholar 

  • Joseph, J. and Sendner, H. (1958) Über die horizontale Diffusion im Meere. Deut. Hydrogr. Z. 11, 49–77.

    Google Scholar 

  • Jumper, G. Y. Jr and Baird, R.C. (1991) Location by olfaction: a model and application to the mating problem in the deep-sea hatchetfish Argyropelecus hemigymnus. Am. Nat. 138, 1431–1458.

    Google Scholar 

  • Kalmijn, A.J. (1988a) Hydrodynamic and acoustic field detection. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals. New York: Springer Verlag, pp. 83–130.

    Google Scholar 

  • Kalmijn, A.J. (1988b) Detection of weak electric fields. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals. New York: Springer Verlag, pp. 151–186.

    Google Scholar 

  • Kareiva, P. (1994) Space: the final frontier in ecological theory. Ecology 75, 1.

    Google Scholar 

  • Katz, P.L. (1974) A long-term approach to foraging optimisation. Am. Nat. 108, 758–782.

    Google Scholar 

  • Ketterson, E.D. and Nolan, V. Jr (1992) Hormones and life histories: an integrative approach. Am. Nat. 140,Suppl. S33–S62.

    Google Scholar 

  • Kieffer, J.D. and Colgan, P.W. (1992) The role of learning in fish behaviour. Rev. Fish. Biol. Fish. 2, 125–143.

    Google Scholar 

  • Kobayashi, A. and Kirschvink, J.L. (1995) Magnetoperception and electromagnetic field effects: sensory perception of the geomagnetic field in animals and humans. Adv. Chem. Ser. 250, 367–394.

    Google Scholar 

  • Kohonen, T. (1984) Self-Organization and Associative Memory. Heidelberg: Springer Verlag. 312 pp.

    Google Scholar 

  • Kozlowski, J. (1993) Measuring fitness in life-history studies. Trends Ecol. Evol. 8, 84–85.

    Google Scholar 

  • Langton, C.G. (ed.) (1989) Artificial Life (Santa Fe Institute Studies in the Sciences of Complexity, Vol. 6). Reading: Addison-Wesley. 655 pp.

    Google Scholar 

  • Langton, C.G. (ed.) (1997) Artificial Life. An Overivew. Cambridge MA: MIT Press. 340 pp.

    Google Scholar 

  • Legac, F., Blaise, O., Fostier, A., Lebail, P.Y., Loir, M., Mourot, B. and Weil, C. (1993) Growth-hormone (GH) and reproduction — a review. Fish Physiol. Biochem. 11, 219–232.

    Google Scholar 

  • Lehodey, P., Bertignac, M., Hampton, J., Lewis, A. and Picaut, J. (1997) El Niño Southern Oscillation and tuna in the western Pacific. Nature 389, 715–718.

    Google Scholar 

  • León, J.A. (1993) Plasticity in fluctuating environments. In Yoshimura, J. and Clark, C.W., eds. Adaptation in Stochastic Environments (Lecture Notes in Biomathematics 98). New York: Springer Verlag, pp. 105–121.

    Google Scholar 

  • Lomnicki, A. (1988) Population Ecology of Individuals. Princeton: Princeton University Press. 223 pp.

    Google Scholar 

  • Loose, C. and Dawidowicz, P. (1994) Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology 78, 2255–2263.

    Google Scholar 

  • Lotka, A.J. (1907) Studies on the norm of growth of material aggregates. Am. J. Sci. 24, 199–216, 375–376.

    Google Scholar 

  • Lotka, A.J. (1925) Elements of Physical Biology. Baltimore: Williams and Wilkins. 460 pp.

    Google Scholar 

  • Lu, Z., Popper, A.N. and Fay, R.R. (1996) Behavioural detection of acoustic particle motion by a teleost fish (Astronotus ocellatus): sensitivity and directionality. J. Comp. Physiol. 179A, 227–233.

    Google Scholar 

  • Luecke, C. and O'Brien, W.J. (1981) Prey location volume of a planktivorous fish: a new measure of prey vulnerability. Can. J. Fish. Aquat. Sci. 38, 1264–1270.

    Google Scholar 

  • MacArthur, R.H. and Pianka, E.R. (1966) On optimal use of a patchy environment. Am. Nat. 100, 603–609.

    Google Scholar 

  • MacCall, A.D. (1990) Dynamic Geography of Marine Fish Populations (Books in Recruitment Fisheries Oceanography, Washington Sea Grant Program). Seattle: University of Washington Press. 153 pp.

    Google Scholar 

  • McFarland, D.J. (1977) Decision-making in animals. Nature 269, 15–21.

    Google Scholar 

  • McGurk, M.D. (1986) Natural mortality of marine pelagic fish eggs and larvae: role of spatial patchiness. Mar. Ecol. Prog. Ser. 34, 227–242.

    Google Scholar 

  • McLaren, I.A. (1963) Effects of temperature on growth of zooplankton and the adaptive value of vertical migration. J. Fish. Res. Bd Can. 20, 685–727.

    Google Scholar 

  • McLaren, I.A. (1974) Demographic strategy of vertical migration by a marine copepod. Am. Nat. 108, 91–102.

    Google Scholar 

  • McNamara, J.M. (1991) Optimal life histories: a generalisation of the Perron-Frobenius Theorem. Theor. Popul. Biol. 40, 230–245.

    Google Scholar 

  • McNamara, J.M. (1993) State-dependent life-history equations. Acta Biotheor. 41, 165–174.

    Google Scholar 

  • McNamara, J.M. (1995) Implicit frequency-dependence and kin-selection in fluctuating environments. Evol. Ecol. 9, 185–203.

    Google Scholar 

  • McNamara, J.M. and Houston, A.I. (1985) Optimal foraging and learning. J. Theor. Biol. 117, 231–249.

    Google Scholar 

  • McNamara, J.M. and Houston, A.I. (1986) The common currency for behavioural decisions. Am. Nat. 127, 358–378.

    Google Scholar 

  • McNamara, J.M. and Houston, A.I. (1990) State-dependent ideal free distributions. Evol. Ecol. 4, 298–311.

    Google Scholar 

  • McNamara, J.M. and Houston, A.I. (1992) State-dependent life-history theory and its implications for optimal clutch size. Evol. Ecol. 6, 170–185.

    Google Scholar 

  • McNamara, J.M. and Houston, A.I. (1994) The effect of a change in foraging options on intake rate and predation rate. Am. Nat. 144, 978–1000.

    Google Scholar 

  • McNamara, J.M. and Houston, A.I. (1996) State-dependent life histories. Nature 380, 215–221.

    Google Scholar 

  • McNamara, J.M., Webb, J.N. and Collins, E.J. (1995) Dynamic optimisation in fluctuating environments. Proc. R. Soc. Lond. 261B, 279–284.

    Google Scholar 

  • Mangel, M. and Clark, C.W. (1986) Towards a unified foraging theory. Ecology 67, 1127–1138.

    Google Scholar 

  • Mangel, M. and Clark, C.W. (1988) Dynamic Modeling in Behavioral Ecology. Princeton: Princeton University Press. 308 pp.

    Google Scholar 

  • Maynard Smith, J. (1974) The theory of games and the evolution of animal conflicts. J. Theor. Biol. 47, 209–221.

    Google Scholar 

  • Maynard Smith, J. (1982) Evolution and the Theory of Games. Cambridge: Cambridge University Press.

    Google Scholar 

  • Maynard Smith, J. (1996) Conclusions. In Runciman, W.G., Maynard Smith, J. and Dunbar, R.I.M., eds. Evolution of Social Behaviour in Primates and Man (Proc. British Academy 88). Oxford: Oxford University Press, pp. 291–297.

    Google Scholar 

  • Maynard Smith, J. and Price, G.R. (1973) The logic of animal conflict. Nature 246, 15–18.

    Google Scholar 

  • Menczer, F. and Belew, K. (1996) From complex environments to complex behaviours. Adap. Behav. 4, 317–364.

    Google Scholar 

  • Metz, J.A.J. and Diekman, O. (1986) The Dynamics of Physiologically Structured Populations. Berlin: Springer-Verlag.

    Google Scholar 

  • Milinski, M. (1979) An evolutionarily stable feeding strategy in sticklebacks. Z. Tierpsychol. 51, 36–40.

    Google Scholar 

  • Milinski, M. (1993) Predation risk and feeding behaviour. In Pitcher, T.J., ed. The Behaviour of Teleost Fishes, 2nd edn (Fish and Fisheries Series 7). London: Chapman and Hall, pp. 285–305.

    Google Scholar 

  • Mitchell, M. (1996) An Introduction to Genetic Algorithms. Cambridge: IEEE Press. 205 pp.

    Google Scholar 

  • Monod, J. (1971) Chance and Necessity: an Essay on the Natural Philosophy of Modern Biology. New York: Alfred A. Knop. 199 pp.

    Google Scholar 

  • Montana, J. and Davis, L. (1989) Training feedforward networks using genetic algorithms. In Sridharan, N.S., ed. Eleventh International Joint Conference on Artificial Intelligence. Detroit: Morgan Kaufmann, pp. 762–767.

    Google Scholar 

  • Montgomery, J.C. (1989) Lateral line detection of planktonic prey. In: Coombs, S., Gorner, P. and Muntz, H., eds. The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Springer-Verlag, pp. 561–574.

    Google Scholar 

  • Montgomery, J., Coombs, S. and Halstead, M. (1995) Biology of the mechanosensory lateral line in fishes. Rev. Fish. Biol. Fish. 5, 399–416.

    Google Scholar 

  • Moody, A.L., Houston, A.I. and McNamara, J.M. (1996) Ideal free distributions under predation risk. Behav. Ecol. Sociobiol. 38, 131–143.

    Google Scholar 

  • Moore, A., Freake, S.M. and Thomas, I.M. (1990) Magnetic particles in the lateral line of Atlantic salmon (Salmo salar L.). Phil. Trans. R. Soc. 329B, 11–15.

    Google Scholar 

  • Murdoch, W.W. (1966) Population stability and life history phenomena. Am. Nat. 100, 5–11.

    Google Scholar 

  • Mylius, S.O. and Diekmann, O. (1995) On evolutionarily stable life histories, optimisation and the need to be specific about density dependence. Oikos 74, 218–224.

    Google Scholar 

  • Neill, W.H. (1979) Mechanisms of fish distribution in heterothermal environments. Am. Zool. 19, 305–317.

    Google Scholar 

  • Noda, M., Gushima, K. and Kakuda, S. (1994) Local prey search based on spatial memory and expectation in the planktivorous reef fish, Chromis chysurus (Pomacentridae). Anim. Behav. 47, 1413–1422.

    Google Scholar 

  • Nolfi, S., Parisi, D. and Elman, J.L. (1994) Learning and evolution in neural networks. Adapt. Behav. 3, 5–28.

    Google Scholar 

  • Oksanen, T., Oksanen, L. and Fretwell, S.D. (1992) Habitat selection and predator-prey dynamics. Trends Ecol. Evol. 7, 313.

    Google Scholar 

  • Olsen, O.A.S. (1989) Structured modelling of fish physiology. Dr. ing. dissertation, ITK, NTH, Trondheim, Norway. Trondheim: ITK-rapport 1989:52-W. 225 pp.

    Google Scholar 

  • Parisi, D., Cecconi, F. and Nolfi, S. (1990) Econets: neural networks that learn in an environment. Network 1, 149–168.

    Google Scholar 

  • Parker, G.A. (1982) Phenotype-limited evolutionary stable strategies. In Kings College Sociobiology Group, eds. Current Problems in Sociobiology. Cambridge: Cambridge University Press, pp. 173–201.

    Google Scholar 

  • Parker, G.A. (1984) Evolutionary stable strategies. In Krebs, J.R. and Davies, N.B., eds. Behavioral Ecology: an Evolutionary Approach. Oxford: Blackwell Scientific Publications, pp. 30–61.

    Google Scholar 

  • Parslow, J.S. and Gabric, A.J. (1989) Advection, dispersal and plankton patchiness on the Great Barrier reef. Aust. J. Mar. Freshwat. Res. 40, 403–419.

    Google Scholar 

  • Popper, A.N. (1996) The teleost octavolateralis system: structure and function. Mar. Freshwat. Behav. Physiol. 27, 95–110.

    Google Scholar 

  • Pyke, H.G., Pulliam, H.R. and Charnov, E.L. (1977) Optimal foraging theory: a selective review of theory and tests. Q. Rev. Biol. 52, 137–154.

    Google Scholar 

  • Quirk, J.P. (1987) Intermediate Microeconomics. New York: Macmillan. 486 pp.

    Google Scholar 

  • Reed, M. and Balchen, J.G. (1982) A multidimensional continuum model of the fish population dynamics and behaviour: application to the Barents Sea capelin (Mallotus villosus). Model. Ident. Control 3, 65–109.

    Google Scholar 

  • Reeke, G.N. and Sporns, O. (1993) Behaviorally based modelling and computation approaches to neuroscience. A. Rev. Neurosci. 16, 597–623.

    Google Scholar 

  • Reeves, C.R. (1993) Modern Heuristic Techniques for Combinatorial Problems. Oxford: Blackwells.

    Google Scholar 

  • Riley, G.A. (1946) Factors controlling phytoplankton populations on Georges Bank. J. Mar. Res. 6, 54–73.

    Google Scholar 

  • Roff, D.A. (1992) The Evolution of Life Histories. Theory and Analysis. New York: Chapman and Hall. 535 pp.

    Google Scholar 

  • Rogers, P.H. and Cox, M. (1988) Underwater sound as a biological stimulus. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals. New York: Springer Verlag, pp. 131–149.

    Google Scholar 

  • van Rooij, A.J.F., Jain, L.C. and Johnson, R.P. (1996) Neural Network Training Using Genetic Algorithms (Series in Machine Perception and Artificial Intelligence, Vol. 26). Singapore: World Scientific. 130 pp.

    Google Scholar 

  • Rosland, R. (1997) Optimal responses to environmental and physiological constraints. Evaluation of a model for a planktivore. Sarsia 82, 113–128.

    Google Scholar 

  • Rosland, R. and Giske, J. (1994) A dynamic optimisation model of the diel vertical distribution of a pelagic planktivorous fish. Prog. Oceanogr. 34, 1–43.

    Google Scholar 

  • Rosland, R. and Giske, J. (1997) A dynamic model for the life history of Maurolicus muelleri, a pelagic planktivorous fish. Fish. Oceanogr. 6, 19–34.

    Google Scholar 

  • Rothschild, B.J. and Osborn, T.R. (1988) Small scale turbulence and plankton contact rates. J. Plankton Res. 10, 465–474.

    Google Scholar 

  • Rummelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning representations by back propagating errors. Nature 323, 533–536.

    Google Scholar 

  • Saila, S.B. (1996) Guide to some computerized artificial intelligence methods. In Megrey, B.A. and Moksness, E., eds. Computers in Fisheries Research. London: Chapman and Hall, pp. 8–40.

    Google Scholar 

  • Salvanes, A.G.V., Aksnes, D.L. and Giske, J. (1995) A surface-dependent gastric evacuation model. J. Fish Biol. 47, 679–695.

    Google Scholar 

  • Schaffer, W.M. (1983) The application of optimal control theory to the general life history problem. Am. Nat. 121, 418–431.

    Google Scholar 

  • Schellart, N.A.M. (1992) Interrelations between the auditory, the visual and the lateral line systems of teleosts; a mini-review of modelling sensory capabilities. Neth. J. Zool. 42, 459–477.

    Google Scholar 

  • Schoener, T.W. (1971) Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369–404.

    Google Scholar 

  • Schoener, T.W. (1987) A brief history of optimal foraging theory. In: Kamil, A.C., Krebs, J.R. and Pulliam, H.R., eds. Foraging Behaviour. New York: Plenum Press, pp. 5–67.

    Google Scholar 

  • Sibly, R. and McFarland, D. (1976) On the fitness of behaviour sequences. Am. Nat. 110, 601–617.

    Google Scholar 

  • Slagstad, D., Westgård, T., Olsen, K., Sælid, S. and Balchen, J.G. (1975) Mathematical modelling of population, quality, migration and distribution of important species of fish in an ocean. SINTEF Rapport STF48 A75050, Trondheim, Norway. 119 pp. (In Norwegian).

  • Smith, R.J.F. (1992) Alarm signals in fishes. Rev. Fish Biol. Fish. 2, 33–63.

    Google Scholar 

  • Stearns, S.C. (1992) The Evolution of Life Histories. Oxford: Oxford University Press. 249 pp.

    Google Scholar 

  • Stephens, D.W. (1981) The logic of risk-sensitive foraging preferences. Anim. Behav. 29, 628–629.

    Google Scholar 

  • Stephens, D.W. (1996) On the relationship between the feedback control of digestion and the temporal pattern of food intake. Biol. Bull. 191, 85–91.

    Google Scholar 

  • Stephens, D.W. and Krebs, J.R. (1986) Foraging Theory. Princeton: Princeton University Press. 247 pp.

    Google Scholar 

  • Sumida, B.H., Houston, A.I., McNamara, J.M. and Hamilton, W.D. (1990) Genetic algorithms and evolution. J. Theor. Biol. 147, 59–84.

    Google Scholar 

  • Sundby, S. (1997) Turbulence and ichtyoplankton: influence on vertical distributions and encounter rates. Sci. Mar. 61, 159–176.

    Google Scholar 

  • Sutherland, W.J. (1983) Aggregation and the 'ideal free' distribution. J. Anim. Ecol. 52, 821–828.

    Google Scholar 

  • Sutherland, W.J. and Parker, G.A. (1992) The relationship between continuous input and interference models of ideal free distributions with unequal competitors. Anim. Behav. 44, 345–355.

    Google Scholar 

  • Sverdrup, H.U., Johnson, M.W. and Fleming, R.H. (1942) The Oceans. New York: Prentice-Hall. 1087 pp.

    Google Scholar 

  • Terzopoulus, D., Tu, X. and Grzeszczuk, R. (1995) Artificial fishes: autonomous locomotion, perception, behaviour, and learning in a simulated physical world. Artificial Life 1, 327–351.

    Google Scholar 

  • Thorpe, W.E. (1963) Learning and Instinct in Animals. Cambridge, MA: Harvard University Press. 493 pp.

    Google Scholar 

  • Toquenaga, Y. and Wade, M.J. (1996) Sewall Wright meets artificial life: the origin and maintenance of evolutionary novelty. Trends Ecol. Evol. 11, 478–482.

    Google Scholar 

  • Tregenza, T. (1995) Building on the Ideal Free Distribution. Adv. Ecol. Res. 26, 253–307.

    Google Scholar 

  • Tuljapurkar, S. and Caswell, H. (eds) (1997) Structured-population Models in Marine, Terrestrial, and Freshwater Systems (Population and Community Biology Series 18). London: Chapman and Hall. 643 pp.

    Google Scholar 

  • Turner, J.R.G. and Speed, M.P. (1996) Learning and memory in mimicry. I. Simulations of laboratory experiments. Phil. Trans. R. Soc. Lond. 351B, 1157–1170.

    Google Scholar 

  • Tyler, J.A. and Gilliam, J.F. (1995) Ideal free distributions of stream fish — a model and test with minnows, Rhinichthys atratulus. Ecology 76, 580–592.

    Google Scholar 

  • Tyler, J.A. and Rose, K.A. (1994) Individual variability and spatial heterogeneity in fish population models. Rev. Fish Biol. Fish. 4, 91–123.

    Google Scholar 

  • Utne, A.C.W. and Bacchi, B. (1997) The influence of visual and chemical stimuli from cod Gadus morhua on the distribution of two-spotted goby Gobiusculus flavescens (Fabricius). Sarsia 82, 129–135.

    Google Scholar 

  • Vabø, R. and Nøtestad, L. (1997) An individual based model of fish school reactions: predicting antipredator behaviour as observed in nature. Fish. Oceanogr. 6, 155–171.

    Google Scholar 

  • Walker, M.M., Diebel, C.E., Haugh, C.V., Pankhurst, P.M., Montgomery, J.C. and Green, C.R. (1997) Structure and function of the vertebrate magnetic sense. Nature 390, 371–376.

    Google Scholar 

  • Werner, E.E. and Gilliam, J.F. (1984) The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15, 393–425.

    Google Scholar 

  • Williams, G.C. (1966a) Natural selection, the cost of reproduction, and a refinement of Lack's principle. Am. Nat. 100, 687–690.

    Google Scholar 

  • Williams, G.C. (1966b) Adaptation and Natural Selection: a Critique of Some Current Evolutionary Thought. Princeton: Princeton University Press. 307 pp.

    Google Scholar 

  • Wright, R. (1994) The Moral Animal. New York: Pantheon Books, Random House. 466 pp.

    Google Scholar 

  • Yoshimura, J. and Clark, C.W. (1991) Individual adaptations in stochastic environments. Evol. Ecol. 5, 173–192.

    Google Scholar 

  • Yoshimura, J. and Clark, C.W. (1993) Introduction: historical remarks. In Yoshimura, J. and Clark, C.W., eds. Adaptation in Stochastic Environments (Lecture Notes in Biomathematics 98). New York: Springer Verlag, pp. 1–7.

    Google Scholar 

  • Yoshimura, J. and Jansen, V.A.A. (1996) Evolution and population dynamics in stochastic environments. Res. Popul. Ecol. 38, 165–182.

    Google Scholar 

  • Zhivotovsky, L.A., Bergman, A. and Feldman, M.W. (1996) A model of individual adaptive behavior in a fluctuating environment. In Belew, R.K. and Mitchell, M., eds. Adaptive Individuals in Evolving Populations (SFI Studies in the Sciences of Complexity 26). Reading: Addison-Wesley, pp. 131–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giske, J., Huse, G. & Fiksen, O. Modelling spatial dynamics of fish. Reviews in Fish Biology and Fisheries 8, 57–91 (1998). https://doi.org/10.1023/A:1008864517488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008864517488

Navigation