Skip to main content
Log in

Synthesis of carbon nanotubes over nickel–iron catalysts supported on alumina under controlled conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) were synthesized by catalytic decomposition of acetylene over Fe, Ni and Fe–Ni catalysts supported on alumina. The growth of CNTs was carried out at various reaction conditions. The growth density and diameter of CNTs could be controlled by varying the catalyst composition and the growth parameters. The growth density of CNTs increased with increasing the activation time of catalysts in H2 atmosphere and/or decreasing acetylene concentration. At 600 °C, higher density of CNTs was observed at 60 min for higher Fe containing catalyst, whereas at 90 min for higher Ni containing catalyst. The growth density of CNTs highly increased with increasing reaction time from 30 to 60 min. For all the catalysts, the diameter of CNTs decreased with increasing growth time further mainly due to hydrogen etching. Bimetallic catalysts produced narrower diameter CNTs than single metal catalysts. The growth of CNTs followed the tip growth mode and the CNTs were multi-walled CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hassanien,M. Tokumoto,Y. Kumazawa,H. Kataura,Y. Maniwa,S. Suzuki andY. Achiba, Appl. Phys. Lett. 73 (1998) 3839.

    Google Scholar 

  2. A.Y. Kasumov,R. Deblock,M. Kociak,R. Reulet,H. Bouchiat,I.I. Khodos,Y.B. Gorbatov,V.T. Volkov,C. Journet andM. Burghard, Science 284 (1999) 1508.

    Google Scholar 

  3. C. Nützenadel,A. Züttel,D. Chartouni andL. Schlapbach, Electrochem. Solid State Lett. 2 (1999) 30.

    Google Scholar 

  4. P. Chen,X. Wu,J. Lin andK.L. Tan, Science 285 (1999) 91.

    Google Scholar 

  5. A. Chambers,C. Park,R.T.K. Baker andN.M. Rodriguez, J. Phys. Chem. 102B (1998) 4253.

    Google Scholar 

  6. A. Thaib,G.A. Martin,P. Pinheiro,M.C. Schouler andP. Gadelle, Catal. Lett. 63 (1999) 135.

    Google Scholar 

  7. A. Zhang,C. Li,S. Bao andQ. Xu, Micropor. Mesopor. Mater. 29 (1999) 383.

    Google Scholar 

  8. P.E. Anderson andN.M. Rodriguez, J. Mater. Res. 14 (1999) 2912.

    Google Scholar 

  9. A. Peigney,Ch. Laurent,F. Dobigeon andA. Rousset, J. Mater. Res. 12 (1997) 613.

    Google Scholar 

  10. K. Hernadi,A. Fonseca,P. Piedigrosso,M. Delvaux,J.B. Nagy,D. Bernaerts andJ. Riga, Catal. Lett. 48 (1997) 229.

    Google Scholar 

  11. W.Z. Li,S.S. Xie,L.X. Qian,B.H. Chang,B.S. Zou,W.Y. Zhou,R.A. Zhao andG. Wang, Science 274 (1996) 1701.

    Google Scholar 

  12. C. Park andR.T.K. Baker, J. Catal. 190 (2000) 104.

    Google Scholar 

  13. C. Park,N.M. Rodriguez andR.T.K. Baker, J. Catal. 169 (1997) 212.

    Google Scholar 

  14. K. Hernadi,A. Fonseca,J.B. Nagy,D. Bernaerts andA.A. Lucas, Carbon 34 (1996) 1249.

    Google Scholar 

  15. A. Govindaraj,E. Flahaut,Ch. Laurent,A. Peigney,A. Rousset andC.N.R. Rao, J. Mater. Res. 14 (1999) 2567.

    Google Scholar 

  16. K. Tohji,T. Goto,H. Takahashi,Y. Shinoda,N. Shimizu,B. Jeyadevan,I. Matsuoka,Y. Saito,A. Kasuhka,T. Oshuna,K. Hiraga andY. Nishima, Nature 383 (1996) 679.

    Google Scholar 

  17. A. Thess,R. Lee,P. Nikolaev,H. Dai,P. Petit,J. Robert,C. Xu,Y.H. Lee,S.G. Kim,A.G. Rinzler,D.T. Colbert,G.E. Scuseria,D. Tomanek,J.E. Fischer andR.E. Smalley, Science 273 (1996) 483.

    Google Scholar 

  18. M.S. Dresselhaus,K.A. Williams andP.C. Eklund, Mater. Res. Bull. 24 (1999) 45.

    Google Scholar 

  19. W. Han,S. Fan,Q. Li,W. Liang,B. Gu andD. Yu, Chem. Phys. Lett. 265 (1997) 374.

    Google Scholar 

  20. M. Yudasaka,R. Kikuchi,Y. Ohki,E. Ota andS. Yoshimura, Appl. Phys. Lett. 70 (1997) 1817.

    Google Scholar 

  21. M. Su,B. Zheng andJ. Liu, Chem. Phys. Lett. 322 (2000) 321.

    Google Scholar 

  22. Y.C. Choi,D.J. Bae,Y.H. Lee,B.S. Lee,I.T. Han,W.B. Choi,N.S. Lee andJ.M. Kim, Synth. Met. 108 (2000) 159.

    Google Scholar 

  23. S.H. Tsai,C.W. Chao,C.L. Lee andH.C. Shih, Appl. Phys. Lett. 74 (1999) 3462.

    Google Scholar 

  24. A.M. Rao,E. Richter,S. Bandow,B. Chasc,P.C. Eklund,K.A. Willams,S. Fang,K.R. Subbaswamy,M. Menon,A. Thess,R.E. Smalley,G. Dresselhaus andM.S. Dresselhaus, Science 275 (1997) 187.

    Google Scholar 

  25. S. Amelinckx,X.B. Zhang,D. Bernaters,X.F. Zhang,V. Ivanov andJ.B. Nagy, Science 267 (1995) 635.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazle Kibria, A., Mo, Y. & Nahm, K. Synthesis of carbon nanotubes over nickel–iron catalysts supported on alumina under controlled conditions. Catalysis Letters 71, 229–236 (2001). https://doi.org/10.1023/A:1009019624640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009019624640

Navigation