Skip to main content
Log in

A New Approach to Asymptotic Diagonalization of Linear Differential Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the asymptotic diagonalization of a system consisting of an \(L_{{\text{loc}}}^p \)-matrix plus a finite number of \(L^{m_i } \)-perturbations on an interval I 0=[t 0, ∞), where p, m i∈[1, ∞). Using linear skew-product flows and spectral theory, we show that if the unperturbed system has full spectrum over its omega-limit set, then the entire system is asymptotically diagonalizable almost everywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bylov, B. F. (1970). On the reduction of a system of linear equations to diagonal form, English translation. Amer. Math. Soc. Transl. 89, No. 2, 51-59.

    Google Scholar 

  • Coddington, E. A., Levinson, N. (1955). Theory of Ordinary Differential Equations, McGraw-Hill, New York.

    Google Scholar 

  • Coppel, W. A. (1967). Dichotomies and reducibility. J. Diff. Eq. 3, 500-521.

    Google Scholar 

  • Coppel, W. A. (1978). Dichotomies in Stability Theory, Lecture Notes in Mathematics, No. 629, Springer-Verlag, Berlin.

    Google Scholar 

  • Folland, G. B. (1984). Real Analysis, Wiley, New York.

    Google Scholar 

  • Hsieh, P. F., Xie, F. (1998). On asymptotic diagonalization of linear ordinary differential equations. Dynam. Contin. Discrete Impuls. Systems 4, 351-377.

    Google Scholar 

  • Hartman, P., and Wintner, A. (1955). Asymptotic integrations of linear differential equations. Amer. J. Math. 77, 45-86 and 932.

    Google Scholar 

  • Johnson, R. A., and Sell, G. R. (1981). Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems. J. Diff. Eq. 41, 262-288.

    Article  Google Scholar 

  • Levinson, N. (1948). The asymptotic nature of solutions of linear differential equations. Duke Math. J. 15, 111-126.

    Article  Google Scholar 

  • Okikiolu, G. O. (1971). Aspects of the Theory of Bounded Integral Operators in L p -Spaces, Academic Press, London.

    Google Scholar 

  • Palmer, K. J. (1982). Exponential dichotomy, integral separation and diagonalizability of linear systems of ordinary differential equations. J. Diff. Eq. 43, 184-203.

    Article  Google Scholar 

  • Sacker, R. J., and Sell, G. R. (1974). Existence of dichotomies and invariant splittings for linear differential systems, I. J. Diff. Eq. 15, 429-458.

    Article  Google Scholar 

  • Sacker, R. J., and Sell, G. R. (1976). Existence of dichotomies and invariant splittings for linear differential systems, II. J. Diff. Eq. 22, 478-496.

    Article  Google Scholar 

  • Sacker, R. J., and Sell, G. R (1978). A spectral theory for linear differential systems. J. Diff. Eq. 27, 320-358.

    Google Scholar 

  • Sacker, R. J. (1979). The splitting index for linear differential systems. J. Diff. Eq. 33, 368-405.

    Google Scholar 

  • Sell, G. R. (1968). Compact sets of nonlinear operators. Funkcial. Ekvac. 11, 131-138.

    Google Scholar 

  • Sell, G. R. (1971). Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold, London.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodine, S.I., Sacker, R.J. A New Approach to Asymptotic Diagonalization of Linear Differential Systems. Journal of Dynamics and Differential Equations 12, 229–245 (2000). https://doi.org/10.1023/A:1009054904419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009054904419

Navigation