Skip to main content
Log in

Photoinduced Structural Changes in Poly(4-Vinyl Pyridine): A Luminescence Study

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present work we show a way of controlling photoluminescence (PL) properties through photoinduced quasi-crystal formation in a system based on poly(4-vinyl pyridine) (P4VPy). Under UV irradiation at 380 nm, concentrated solutions of P4VPy in pyridine turn into gel. This phase transition results in changes in the optical properties of this polymer. The position of the PL maximum can be changed continuously from 440 to 480 nm during irradiation. After several minutes of UV irradiation a new red-shifted PL at 492 nm appears upon excitation by light of a wavelength corresponding to that of the initial PL maximum, which is also red-shifted during irradiation. Solutions of P4VPy in pyrimidine show similar behavior, but those in pyridazine do not exhibit such behavior. We have found that the reason for the observed changes in the electronic properties is a photoinduced directional ordering of polymer molecules in a special quasi-crystal formation. The process originates from a structural change in the side chain of P4VPy, namely, protonation of the polymeric pyridine after solvation. During irradiation, the polymeric pyridinium ion interacts with neutral polymeric pyridine molecules. Interchain interaction through hydrogen bonds lead to an electronic property change. We observed that the process of photoinduced sol-gel transformation is reversible. Mechanical perturbation or heating can convert the gel back to a fluid solution. The red-shifted PL is not observed, and the initial PL is blue-shifted to 450 nm and stays there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. A. Fox (1999) Acc. Chem. Res. 32, 201.

    Google Scholar 

  2. F. Garnier, (1999) Acc. Chem. Res. 32, 209.

    Google Scholar 

  3. C.-Y. Liu and A. Bard (1999) Acc. Chem. Res. 32, 235.

    Google Scholar 

  4. J. L. Bredas (1985) J. Chem. Phys. 82, 3808.

    Google Scholar 

  5. G. P. Brivio and E. M. Mulazzi (1983) Chem. Phys. Lett. 95, 555.

    Google Scholar 

  6. A. G. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su (1988) Rev. Mod. Phys. 60, 781.

    Google Scholar 

  7. J. W. Blatchford, S. W. Jessen, L.-B. Lin, T. L. Gustafson, D.-K. Fu, H. L. Wang, T. M. Swager, A. G. MacDiarmid, and A. J. Epstein (1996) Phys. Rev. B 54, 9180.

    Google Scholar 

  8. W. Jessen, J. W. Blatchford, L.-B. Lin, T. L. Gustafson, J. Partee, J. Shinar, D.-K. Fu, M. J. Marsella, T. M. Swager, A. G. MacDiarmid, and A. J. Epstein (1997) Synth. Metals 84, 501.

    Google Scholar 

  9. M. Halim, J. N. G. Pillow, A. D. W. Samuel, and P. L. Burn (1999) Adv. Mater. 11, 371.

    Google Scholar 

  10. B. M. Sheikho-Ali, M. Rapta, G. Jameson, C. Cui, and R. Weiss (1994) J. Phys. Chem. 98, 10412.

    Google Scholar 

  11. V. Bekiari and P. Lianos (1998) Adv. Matter. 10, 1455.

    Google Scholar 

  12. S. A. Jenekhe and J. A. Osaheni (1994) Science 265, 765.

    Google Scholar 

  13. W. Jessen, J. W. Blatchford, L.-B. Lin, T. L. Gustafson, J. Partee, J. Shinar, D.-K. Fu, M. J. Marsella, T. M. Swager, A. G. MacDiarmid, and A. J. Epstein (1997) Synth. Metals 84, 501.

    Google Scholar 

  14. E. Vaganova and S. Yitzchaik (1998) Acta Polym. 49, 632.

    Google Scholar 

  15. S. Son, A. Dodabalapur, A. J. Lovinger, and M. E. Galvin (1995) Science 269, 376.

    Google Scholar 

  16. Y. Eichen, G. Nakhamovich, V. Gorelik, O. Epstein, J. M. Poplawski, and E. Ehrenfreund (1998) J. Am. Chem. Soc. 120, 10463.

    Google Scholar 

  17. C. L. Gettinger, A. J. Heeger, J. M. Drake, and D. J. Pane (1994) J. Chem. Phys. 101, 1673.

    Google Scholar 

  18. C. E. Hoyle and J. M. Torkelson (Eds.) (1986) Photophysics of Polymers, ACS Symposium Series 358, pp. 108-122.

  19. A. Suzuki and T. Tanaka (1990) Nature 346, 345.

    Google Scholar 

  20. M. Berthelot, C. Laurence, M. Safar, and F. Besseau (1998) J. Chem. Soc. Perkin Trans. 2, 283.

    Google Scholar 

  21. E. Lifshitz, A. Kaplan, E. Ehrenfreund, and D. Meissner (1998) J. Phys. Chem. B 102, 967.

    Google Scholar 

  22. M. Kasha, H. R. Rawis, and A. El-Bayoumi (1965) Pure Appl. Chem. 11, 371.

    Google Scholar 

  23. G. A. Kurkchi and A. V. Iogansen, (1991) Russ. J. Phys. Chem. 65, 654.

    Google Scholar 

  24. S. E. Odinokov, A. A. Mashkovsky, V. P. Glazunov, A. V. Iogansen, and A. V. Rassadin (1976). Spectrochim. Acta B.V. 32A, 1355.

    Google Scholar 

  25. E. Vaganova, M. Rozenberg, and S. Yitzchaik (submitted tor publication).

  26. M. Rozenberg, E. Vaganova, and S. Yitzchaik (1998) in Book of Abstracts, Proton Solvatation and Proton Mobility, Neve-Ilan, Israel, Oct., p. 28.

    Google Scholar 

  27. A. Yariv and P. Yeh (1998) Optical Waves in Crystals, Wiley-Interscience, New York.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaganova, E., Meshulam, G., Kotler, Z. et al. Photoinduced Structural Changes in Poly(4-Vinyl Pyridine): A Luminescence Study. Journal of Fluorescence 10, 81 (2000). https://doi.org/10.1023/A:1009426622243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009426622243

Navigation