Skip to main content
Log in

Discontinuities in Amplitudes of Particles Micromotions Characterizing Phase Transitions in Liquid State

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The behavior of amorphous solids below Vogel's (T V ) or the glass transition (T g ) temperature, as well as the solid-liquid transition, have been analyzed taking into consideration the anharmonicity of motion of microparticles forming the amorphous bodies. The T g transition is explained within the logical association of this transition with the higher-temperature transitions, which can eventually involve the process of particle release into the gas phase through the process of a sudden vibrational amplitude growth. It follows from the mathematical solution of the anharmonicity problems that the pulses and the double amplitudes will always be present in aliquid matrix. The T g temperature is considered as the boundary point for the liquid state at which the dynamical microcracks of a solid state matrix start to proceed. The processes at T g are accompanied by appearance of new, highly agitated spots and the first microcracks (vacancies) filled up with the ‘semi-evaporated’ particles. In the mechanical sense, these vacancies form a new particle species characterized by quite different properties (different thermal expansion coefficient) as compared with the particles of the original matrix. It is assumed that a number of new mechanical units are growing up to the critical temperature when the original liquid frame, bonding the particles to lower amplitudes, is completely destroyed. The approach proposed does not contradict the traditional views reflected in the famous Adam-Gibbs-Di Marzio or WLF approaches, but allows a different approach to these theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G. and Gibbs, J.H., ‘On the temperature dependence of cooperative relaxation properties in glass-forming liquids’, J. Chem. Phys. 43, 1965, 139–146.

    Article  ADS  Google Scholar 

  • Anderson, P.A., Halperin, B.I. and Varma, C.M., ‘Anomalous low-temperature thermal properties of glass and spin glasses’, Philos. Mag. 25, 1972, 1–9.

    MATH  ADS  Google Scholar 

  • Angel, C.A., ‘Entropy and fragility in supercooling liquids’, J. Res. Natl. Inst. Stand. Technol. 102, 1997, 171–185.

    Google Scholar 

  • Bartoš, J., Bandžuch, P., Šauša, O., Krištiaková, K., Krištiak, J., Kanaya, T. and Jenniger, W., ‘Free volume microstructure and its relationship to the chain dynamics in cis-1,4-poly(butadiene). As seen by positron annihilation lifetime spectroscopy’, Macromolecules 30, 1997, 6906–6912.

    Article  ADS  Google Scholar 

  • Buchenau, U., ‘Soft localized vibrations in glasses and undercooled liquids’, Philos. Mag. B 65(2), 1992, 303–315.

    Google Scholar 

  • Buchenau, U., ‘Soft modes in undercooled liquids’, J. Molecular Struct. 296, 1993, 275–283.

    Article  ADS  Google Scholar 

  • Buchenau, U. and Zorn, M., ‘A relation between fast and slow motions in glassy and liquid selenium’, Europhys. Lett. 18(6), 1998, 523–528.

    ADS  Google Scholar 

  • Buchenau, U., Galperin, Yu.M., Gurevich, V.L. and Schober, H.R., ‘Anharmonic potentials and vibrational localization in glasses’, Phys. Rev. B 43(6), 1991, 5039–5045.

    Article  ADS  Google Scholar 

  • Buchner, M., Ladanyi, B. and Stratt, R.M., ‘The short-time dynamics of molecular liquids. Instantaneous-normal-mode theory’, J. Chem. Phys. 97(11), 1992, 8522–8535.

    Article  ADS  Google Scholar 

  • Cohen, M.H. and Grest, G.S., ‘Liquid-glass transition a free-volume approach’, Phys. Rev. B 20(3), 1979, 1077–1098.

    Article  ADS  Google Scholar 

  • Cohen, M.H. and Turnbull, D., ‘Molecular transport in liquids and glasses’, J. Chem. Phys. 31(5), 1959, 1164–1169.

    Article  ADS  Google Scholar 

  • Debye, P., ‘Zur Theorie der spezifischen Wärmen’, Ann. Physik 39(4), 1912, 789–839.

    MATH  ADS  Google Scholar 

  • Di Marzio, E.A., ‘Equilibrium theory of glasses’, Ann. New York Acad. Sci. 371, 1981, 1–20.

    ADS  Google Scholar 

  • Di Marzio, E.A. and Dowell, F.J., ‘Theoretical prediction of the specific heat of polymer glasses’, J. Appl. Phys. 50(10), 1979, 6061–6066.

    Article  ADS  Google Scholar 

  • Di Marzio, E.A. and Yang, A.J.M., ‘Configurational entropy approach to the kinetics of glasses’, J. Res. Natl. Inst. Stand. Technol. 102(2), 1997, 135–157.

    Google Scholar 

  • Di Marzio, E.A., Gibbs, J.H., Fleming III, P.D. and Sanchez, I.C., ‘Effects of pressure on the equilibrium properties of glass-forming polymers’, Macromolecules 9, 1976, 763–771.

    Article  ADS  Google Scholar 

  • Eisenstein, A. and Gingrich, N.S., ‘The diffraction of X-rays by argon in the liquid, vapor, and critical regions’, Phys. Rev. 62, 1942, 261–270.

    Article  ADS  Google Scholar 

  • Flory, P.J., ‘Statistical thermodynamics of semi-flexible chain molecules’, Proc. Royal Soc. London, Ser. A 234, 1956a, 60–73.

    Article  ADS  Google Scholar 

  • Flory, P.J., ‘Phase equilibria in solutions of rod-like particles’, Proc. Royal Soc. London, Ser. A 234, 1956b, 73–89.

    ADS  Google Scholar 

  • Frenkel, J., Kinetic Theory of Liquids, Dover, New York, 1955, 93, 138–141.

    MATH  Google Scholar 

  • Frick, B., Buchenau, U. and Richter, D., ‘Boson peak and fast relaxation process near the glass transition in polystyrene’, Colloid Polym. Sci. 273, 1995, 413–420.

    Article  Google Scholar 

  • Gibbs, J.H., ‘Nature of the glass transition in polymers’, J. Chem. Phys. 25, 1956, 185–186.

    Article  ADS  Google Scholar 

  • Gibbs, J.H. and Di Marzio, E.A., ‘Nature of the glass transition and the glassy state’, J. Chem. Phys. 28, 1958, 373–383.

    Article  ADS  Google Scholar 

  • Glasstone, S., Laidler, K.J. and Eyring, H., The Theory of Rate Processes, McGraw-Hill, New York, 1941, 492.

    Google Scholar 

  • Goldstein, M., ‘Viscous liquids and the glass transition. V. Sources of the excess specific heat of the liquid’, J. Chem. Phys. 64, 1976, 4767–4774.

    Article  ADS  Google Scholar 

  • Goldstein, M., ‘Viscous liquids and the glass transition. VII. Molecular mechanism for a thermodynamic second order transition’, J. Chem. Phys. 67, 1977, 2246–2253.

    Article  ADS  Google Scholar 

  • Gow, M.M., ‘The thermodynamics of crystal lattices. IV. The elastic constants of a face-centered cubic lattice with central forces’, Proc. Cambridge Philos. Soc. 40, 1944, 151–166.

    Article  MathSciNet  Google Scholar 

  • Grest, G.S. and Cohen, M.H., ‘Liquid-glass transition: Dependence of the glass transition on heating and cooling rates’, Phys. Rev. B 21(9), 1980, 4113–4117.

    Article  ADS  Google Scholar 

  • Grest, G.S. and Cohen, M.H., ‘Liquids, glasses and the glass transition: A free-volume approach’, in Advances in Chemical Physics, Vol. XLVIII, I. Prigogine and S.A. Rice (eds.), Wiley, New York, 1981, 455–523.

    Google Scholar 

  • Hayes, R.A., ‘The relationship between glass temperature, molar cohesion and polymer structure’, J. Appl. Polym. Sci. 5(15), 1961, 318–321.

    Article  Google Scholar 

  • Heuer, A. and Spiess, H.W., ‘Universality of the glass transition temperature’, J. Non-Cryst. Solids 176, 1994, 294–298.

    Article  ADS  Google Scholar 

  • Hlaváček, B., Černošková, E., Prokůpek, L. and Večeřa, M., ‘The transition points in the liquid state and their molecular modeling’, Termochim. Acta 280/281, 1996, 417–447.

    Article  Google Scholar 

  • Hlaváček, B., Křeválek, V. and Souček, J., ‘The anharmonicity of motion in the liquid state and its consequences’, J. Chem. Phys. 107(12), 1997, 4658–4667.

    Article  ADS  Google Scholar 

  • Hurwitz, A., ‘Ñber die Bedingungen, unter welchen eine Gleichung nur Wurlzeln mit negativen reellen Teilen besitzt’, Math. Ann. 46, 1895, 273–284.

    Article  MATH  MathSciNet  Google Scholar 

  • Jean, Y.C., ‘Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers’, Microchem. J. 42, 1990, 72–102.

    Article  MathSciNet  Google Scholar 

  • Kanno, H., ‘A simple derivation of the empirical rule’, J. Non-Cryst. Solids 44, 1981, 409–414.

    Article  ADS  Google Scholar 

  • Karpov, V.G., Klinger, M.I. and Ignatev, F.N., ‘Teoria nizkotemperaturnych anomalij teplovych svojstv amorfnych struktur’, Zhurnal exp. and teor. fiziki 84, 1983, 760–775.

    Google Scholar 

  • Kauzman, W., ‘The nature of the glassy state and the behavior of liquids at low temperatures’, Chem. Rev. 43, 1948, 219–256.

    Article  Google Scholar 

  • Kittel, Ch., Introduction to Solid State Physics, 3rd edn., Wiley, New York, 1966, 184, 195.

    MATH  Google Scholar 

  • Kittel, Ch. and Kroemer, H., Thermal Physics, 2nd edn., W.H. Freeman and Company, San Francisco, CA, 1997.

    Google Scholar 

  • Kittel, Ch., Knight, W.P. and Rudermann, M.A., Berkeley Physics Course, Mechanics, Vol. 1, McGraw-Hill, New York, 1965, 227–229.

    Google Scholar 

  • Krištiak, J., Bartoš, J., Krištiaková, K., Šauša, O., Bandžuch, P., ‘Free-volume microstructure of amorphous polycarbonate at low temperatures determined by positron annihilation lifetime spectroscopy’, Phys. Rev. B 49, 1994, 6601–6607.

    Article  ADS  Google Scholar 

  • Krištiak, J., Bartoš, J., Šauša, O. and Bandžuch, P., ‘The expansion of free-volume in main chain polymers seen by positron annihilation lifetime spectroscopy and Vogel–Fulcher temperature TV’, in Materials Science Forum, Vol. 255–257, Trans. Tech. Publications, Switzerland, 1997, 35–39.

    Google Scholar 

  • Landau, L.D. and Lifschitz, E.M., Teoriticzeskaja Fizika, Vol. 5, Part 1: Statisticzeskaja Fizika, Izdatelstwo Nauka, Moscow, 1976 [in Russian].

    Google Scholar 

  • Lindemann, F.A., ‘Ñber die Berechnung molekularer Eigenfrequenzen’, Phys. Zeits. 11(14), 1910, 609–614.

    MATH  Google Scholar 

  • Luck, W.A.P., ‘Modellbetrachtung einfacher Flüssigkeiten’, Angew. Chem. 91, 1979, 408–420.

    Google Scholar 

  • Luck, W.A.P., ‘How to understand liquids’, in Intermolecular Forces, P.L. Huyskens (ed.) Springer-Verlag, Berlin, 1991, 55–78.

    Google Scholar 

  • Marcus, Y., Introduction to Liquid State Chemistry, Wiley, New York, 1977, 60.

    Google Scholar 

  • Minorsky, N., Non-linear Oscillations, Van Nostrand, Princeton, NJ, 1962.

    Google Scholar 

  • Mohanty, U., ‘Supercooled liquids’, in Advances in Chemical Physics, Vol. 89, I. Prigogine and S.A. Rice (eds.), Wiley, New York, 1995, 86–158.

    Google Scholar 

  • Pain, H.J., The Physics of Vibrations and Waves, 4th edn., Wiley, New York, 1997.

    MATH  Google Scholar 

  • Phillips, W.A., Amorphous Solids: Low Temperature Properties, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  • Pöschl, G. and Teller, E., ‘Bemerkungen zur Quantenmechanik des anharmonischen Oscillators’, Z. Phys. 83, 1933, 143–151.

    Article  MATH  ADS  Google Scholar 

  • Powell, R.E., Roseveare W.E. and Eyring, H., ‘Diffusion, thermal conductivity, and viscous flow of liquids’, Indust. Engrg. Chem. 33, 1941, 430–435.

    Article  Google Scholar 

  • Routh, E.J., ‘Stability of a given state of motion’, in Stability of Motion, A.T. Fuller (ed.), Taylor & Francis, London, 1975a, 18–138.

    Google Scholar 

  • Routh, E.J., ‘Dynamics of system of rigid bodies’, in Stability of Motion, A.T. Fuller (ed.), Taylor & Francis, London, 1975b, 139–182.

    Google Scholar 

  • Schur, J., ‘Ñber die charakteristischen Wurzeln’, Math. Ann. 66, 1909, 488–510.

    Article  MATH  MathSciNet  Google Scholar 

  • Tabor, M., Chaos and Integrability in Non-Linear Dynamics, Wiley, New York, 1989, 33.

    Google Scholar 

  • Thomson, J.M.T. and Stewart, H.B., Non-Linear Dynamics and Chaos, Wiley, New York, 1986.

    Google Scholar 

  • Tockstein, A., ‘Stationary state in chemical kinetics’, Chemické listy 81, 1987a, 561–591 [in Czech].

    Google Scholar 

  • Tockstein, A., ‘A bistable kinetic system with oscillations on the thermodynamic and flow-through branches’, Collect. Czech Chem. Commun. 52, 1987b, 2365–2374.

    Article  Google Scholar 

  • Tockstein, A. and Friendl, L., Chemical Oscillations, Advances in Chemistry, Academia, Prague, 1986.

    Google Scholar 

  • Tockstein, A. and Komers, K., ‘Bimolecular kinetic scheme with a stable and an unstable limiting cycle of two oscillating components’, Collect. Czech Chem. Commun. 45, 1980, 2135–2142.

    Google Scholar 

  • Turnbull, D., ‘Under what conditions can a glass be formed?’, Contemp. Phys. 10(5), 1969, 473–488.

    ADS  Google Scholar 

  • Ueda, Y., New Approaches to Non-Linear Dynamics, SIAM, Philadelphia, PA, 1980, 311.

    Google Scholar 

  • Van Krevelen, D.W., Properites of Polymers, 3rd edn., Elsevier, Amsterdam, 1972, 234.

    Google Scholar 

  • Wunderlich, B. and Turi, E.A., Thermal Characterization of Polymeric Materials, 2nd edn., Vol. 1, Academic Press, New York, 1997, 205–482.

    Google Scholar 

  • Zeller, R.C. and Pohl, R.O., ‘Thermal conductivity and specific heat of noncrystalline solids’, Phys. Rev. B 4, 1971, 2029–2041.

    Article  ADS  Google Scholar 

  • Ziman, J.M., Principles of the Theory of Solids, Cambridge University Press, Cambridge, 1964, 82.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hlaváček, B., Shánělová, J. & Málek, J. Discontinuities in Amplitudes of Particles Micromotions Characterizing Phase Transitions in Liquid State. Mechanics of Time-Dependent Materials 3, 351–370 (1999). https://doi.org/10.1023/A:1009816432728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009816432728

Navigation