Skip to main content
Log in

Nanopore Technology for Biomedical Applications

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The ability to create well-defined and controlled interfaces has been an area of great interest over the last few years, particularly in the biomedical arena. This paper will describe the development of technology for the fabrication of nanopore membranes, and their operation in biological environments. With monodisperse pores sizes as small as 10 nanometers, these membranes offer advantages in their reproducibility, and their ability to be integrated with controlled biochemical surface modification protocols. A comprehensive review of results in the areas of nanopore and biocapsule microfabrication technologies, biocompatibility of nanomembrane materials, biologically appropriate post-processing protocols (bonding, sterilization), surface modification protocols, and appropriate mass transport models will be presented. The results point to the potential of using such technologies for therapeutic applications including immunoisolation biocapsules, drug delivery devices, and targeted biorecognition platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B. Akerman, Journal of Chemical Physics 106, 6152-9, (1997).

    Google Scholar 

  • T. Akin and K. Najafi K, IEEE Transactions on Biomedical Engineering 41(4), 305-313 (1994).

    Google Scholar 

  • Y.B. Aldenhoff, J. Biomed. Mater. 29, 17-928, (1995).

    Google Scholar 

  • J.J. Altman, Pancreatic Islet Cell Transplantation, C. Ricordi, ed. 216-222, (1991).

  • R.C. Anderson, Tech. Digest IEEE Transducers, 477-80, (1997).

  • H. Aranha-Creado and G.J. Fennington Jr., J. Pharm. Sci. Tech. 51, 208-12, (1997).

    Google Scholar 

  • G.T. Baxter, L.J. Bousse, T.D. Dawes, J.M. Libby, D.N. Modlin, J.C. Owick, and J.W. Parce, Clinical Chemistry 40(9), 1800-1804 (1994).

    Google Scholar 

  • G. Beamson and D. Briggs, High resolution XPS of organic polymers. John Wiley & Son (1992).

  • D. Beyer, T.M. Bohanon, W. Knoll, and H. Ringsdorf, Langmuir 12, 2514-2518, (1996).

    Google Scholar 

  • S.K. Bhatia, L.C. Shriver-Lake, K.J. Prior, J.H. Georger, J.M. Calvert, R. Bredehorst, and F.S. Ligler, Analytical Biochemistry 178, 408-413, (1989).

    Google Scholar 

  • S.K. Bhatia, J.L. Teixeira, M. Anderson, L.C. Shriver-Lake, J.M. Calvert, J.H. Georger, J.J. Hickman, C.S. Dulcey, P.E. Schoen, and F.S. Ligler, Analytical Biochemistry 208, 197-205, (1993).

    Google Scholar 

  • L. Bousse, A. Kopf-Sill, and J.W. Parce, Tech. Digest IEEE Transducers, 499-502, (1997).

  • M.D. Brendel, S.S. Kong, R. Alejandro, and D.H. Mintz, Cell Transplantation 3, 427-35, (1994).

    Google Scholar 

  • J.P. Brody, T.D. Osborn, F.K. Forster, and P. Yager, Biophysical Journal 71, 3430-41, (1996).

    Google Scholar 

  • C.R. Brundle, C.A. Evans, and S. Wilson, eds, Encyclopedia of Materials Characterization. Butterworth-Heinemann, Boston (1992).

    Google Scholar 

  • J.B. Brzoska, I.B. Azouz, and F. Rondelez, Langmuir 10, 4367-4373, (1994).

    Google Scholar 

  • K. Burczak, T. Fujisato, M. Hatada, and Y. Ikada, Biomaterials 15, 231-238, (1994).

    Google Scholar 

  • D. Burgreen and F.R. Nakache, J. Phys. Chem. 68, 1084-91, (1964).

    Google Scholar 

  • R. Calafiore, G. Basta, A. Falorni, L. Avellini, and P. Brunetti, Horm. Metab. Research 25, 209-214, (1990).

    Google Scholar 

  • L.T. Calhan, Advanced Materials 7(12), 1033-7, (1995).

    Google Scholar 

  • K.C. Chan, G.M. Muschik, and H.J. Issaq, Journal of Chromatography 695, 113-5, (1997).

    Google Scholar 

  • W. Chu and M. Ferrari, SPIE Proceedings 2593, (1995).

  • Wen-Hwa Chu and M. Ferrari, Proc. SPIE, 9-20, (1995).

  • W. Chu, T. Huen, J. Tu, and M. Ferrari, SPIE Proc. of Micro-and Nanofabricated Structures and Devices for Biomedical Environmental Applications, Ed. P.L. Gourley, 2978, 111-122, (1996).

  • C.K. Colton, Cell Transplantation 4(4), 415-436, (1995).

    Google Scholar 

  • Colton and E. Avgoustiniatos. Transactions of the ASME 113, 152-170 (1991).

    Google Scholar 

  • R.G. Craig, ed., Restorative Dental Materials, 9th Ed. Mosby-Year, Inc., (1993).

  • T.A. Desai, D. Hansford, and M. Ferrari, J. Membrane Science. Accepted February 1999.

  • T.A. Desai, J. Tu, G. Rasi, P. Borboni, and M. Ferrari, Biomedical Microdevices In print, (1998b).

  • T.A. Desai, M. Ferrari, and G. Mazzoni, Materials and Design Technology, Ed. T. Kozik. ASME 1995, 97-103, (1995).

  • T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnology and Bioengineering 57, 118-120, (1998).

    Google Scholar 

  • T.A. Desai, W.H. Chu, J. Tu, P. Shrewbury, and M. Ferrari, Micro-and Nanofabricated Electro-Optical Mechanical Systems for Biomedical and Environmental Applications, P.L. Gourley, ed. BIOS.

  • T.A. Desai, W.H. Chu, G. Rasi, P. Sinibaldi-Vallebona, P. Borboni, G. Beattie, A. Hayek, and M. Ferrari, Micro and Nanofabricated Electro-Optical-Mechanical Systems for Biomedical and Environmental Application 3258, 40-47, (1998a).

    Google Scholar 

  • K.E. Dionne, B.M. Cain, R.H. Li, W.J. Bell, E.J. Doherty, D.H. Rein, M.J. Lysaght, and F.T. Gentile, Biomaterials 17, 257-266, (1996).

    Google Scholar 

  • D.J. Edell, J.N. Churchill, and I.M. Gourley, Biomat. Med Dev. Artif. Org. 10(2), 103-122 (1982).

    Google Scholar 

  • C.S. Effenhauser, A. Manz, and H.M. Widmer, Analytical Chemistry 67, 2284-2287 (1995).

    Google Scholar 

  • J. Evans, D. Liepmann, and A.P. Pisano, Proc. IEEE MEMS 97, 96-101, (1997).

    Google Scholar 

  • M. Ferrari, W.H. Chu, T. Desai, D. Hansford, T. Huen, G. Mazzoni, and M. Zhang, Thin Films and Surfaces for Bioactivity and Biomedical Application, C.M. Cotell, A.E. Meyer, S.M. Gorbatkin, and G.L. Grobe (eds.), MRS, 414, 101-106, (1996).

  • M. Ferrari, W.H. Chu, T.A. Desai, and J. Tu, Advanced Manufacturing Systems and Technology. Ed. E. Kuljanic. CISM Courses and Lectures 372. Springer Verlag, 559-567, (1996).

  • A.W. Flounders, D.L. Brandon, and A.H. Bates, Applied Biochemistry and Biotechnology 50, 265-283, (1995).

    Google Scholar 

  • S.A. Fodor, Science 277, 393-395 (1997).

    Google Scholar 

  • C.D. Furlong and D.J. Beebe, Proc. IEEE Medicine and Biology 248-9, (1997).

  • A. Gerasimidi-Vazeo, Transplantation Proceedings 24, 667-668, (1992).

    Google Scholar 

  • M. Goosen, Biotechnology Bioengineering 27, 146-150, (1985).

    Google Scholar 

  • P.L. Gourley, Nature Medicine 2(8), 942-944 (1996).

    Google Scholar 

  • P. Gravesen, J. Branebjerg, and O.S. Jensen, J. Micromech. Microeng. 3, 168-82, (1993).

    Google Scholar 

  • D. Hansford, Master's Thesis, University of California, Berkeley, (1996).

  • D. Hansford, T. Desai, J. Tu, and M. Ferrari, Micro and Nanofabricated Electro-Optical-Mechanical Systems for Biomedical and Environmental Application, 3258, 164-168, (1998).

    Google Scholar 

  • D.J. Harrison, Tech. Digest IEEE Transducers, 403-6, (1993).

  • D.J. Harrison, K. Fluri, K. Seiler, Z. Fran, C.S. Effenhauser, and A. Manz, Science 261, 895-897 (1993).

    Google Scholar 

  • S. Henry, Proc. IEEE MEMS 98, 494-8, (1998).

    Google Scholar 

  • S.H. Ho, K.M. Gooding, and F.E. Regnier, J. Chromatography 120, 321-333, (1976).

    Google Scholar 

  • G. Hsuie, S. Lee, and P.C. Chang, J. Biomater. Sci. Polymer Edn. 7, 839, (1996).

    Google Scholar 

  • X.C. Huang, M.A. Quesada, and R.A. Mathies, Analytical Chemistry 64(8), 2149-54 (1992).

    Google Scholar 

  • U. Jonsson, G. Olofsson, M. Malmqvist, and I. Ronnberg, Thin Solid Films 124, 117-123, (1985).

    Google Scholar 

  • K.R. Kamath, M.J. Danilich, R.E. Marchant, and K. Park, J. Biomater. Sci. Polymer Edn. 7(11), 977-988, (1996).

    Google Scholar 

  • G.T.A. Kovacs, C.W. Storment, M. Halks-Miller, C.R. Belczynski, C.C. Della Santina, E.R. Lewis, and N.I. Maluf, IEEE Transact. Biomed. Eng. 41, 567-577 (1994).

    Google Scholar 

  • L. Kulinsky, Study of the Fluid Flow in Microfabricated Microchannels, Ph. D. thesis, University of California, Berkeley, (1998).

    Google Scholar 

  • P. Lacy, O.D. Hegne, A. Gerasimidi-Vazeou, F.T. Gentile, and K.E. Dionne, Science 254, 1728-1784, (1992).

    Google Scholar 

  • K.J. Lafferty, Diab. Nutr. Metab. 2, 323-332, (1989).

    Google Scholar 

  • P. Langer and R. Schnabel, Chem. Biochem. Eng. Q 2(4), 242-244, (1988).

    Google Scholar 

  • R. Lanza and W. Chick, Scientific American Science & Medicine 2(4), 16-25, (1995).

    Google Scholar 

  • R.P. Lanza, S.J. Sullivan, and W.L. Chick, Diabetes 41, 1503-1510, (1992).

    Google Scholar 

  • B. Lassen, Clinical Materials 11, 99-103, (1992).

    Google Scholar 

  • F. Lim and A.M. Sun, Science 210, 908-910 (1980).

    Google Scholar 

  • B. Lom, K.E. Healy, and P.E. Hockberger, Journal of Neuroscience Methods 50, 385-397, (1993).

    Google Scholar 

  • R. Maboudian and R.T. Howe, J. Vacuum Scicence and Technology B15(1), 1-20, (1997).

    Google Scholar 

  • J.E. MacNair, Rapid Communications in Mass Spectrometry 11, 1279-85, (1997).

    Google Scholar 

  • G.M. Mala, Dongqing Li, and J.D. Dale, Int. J. Heat Mass Transfer 40, 3079-88, (1997).

    Google Scholar 

  • P.F. Man, D.K. Jones, and C.H. Mastrangelo, Proc. IEEE MEMS 97, 311-6, (1997).

    Google Scholar 

  • H.N. McConnell, J.C. Owicki, J.W. Parce, D.W. Miller, G.T. Baxter, H.G. Wada, and S. Pitchford, Science 257(5078), 1906-1912 (1992).

    Google Scholar 

  • Microfabrication Technology for Research and Diagnostics. Cambridge Healthtech Institute, MA (1995).

  • M. Morpurgo, F.M. Veronese, D. Kachensky, and J.M. Harris, Bioconjugate Chem. 7, 363-368, (1996).

    Google Scholar 

  • M. Mrksich and G.M. Whitesides, Ann. Rev. Biophys. Biomol. Struct. 55-78, (1996).

  • A.H. Nashat, M. Moronne, and M. Ferrari, Biotechnology and Bioengineering 60(2), 137-146, (1998).

    Google Scholar 

  • G.M. O'Shea, M.F.A. Goosen, and A.M. Sun, Biochim. Biophys. Acta 804, 133-136, (1984).

    Google Scholar 

  • J. Pfahler, Sensors Actuators A 21–23, 431-4, (1990).

    Google Scholar 

  • J. Piehler, A. Brecht, K.E. Geckeler, and G. Gauglitz, Biosensors and Bioelectronics 11, 579-590, (1996).

    Google Scholar 

  • J. Renken, D. Reiner, and M. Grunze, Analytical Chemistry 68, 176-182 (1996).

    Google Scholar 

  • D. Reynaerts, J. Peirs, and H. van Brussel, Sensors Actuators A61, 455-62, (1997).

    Google Scholar 

  • C.L. Rice and R. Whitehead, J. Phys. Chem. 69, 4017-24,(1965).

    Google Scholar 

  • E. Richter, G. Fuhr, T. Muller, S. Shirley, S. Rogaschewski, K. Reminer, and C. Dell, Journal of Materials Science: Materials in Medicine 7, 85-97, (1996).

    Google Scholar 

  • J.L. Robeson and R.D. Tilton, Biophysical J. 68, 2145-2155, (1995).

    Google Scholar 

  • P.E. Ross, Scientific American 18-20, (1993).

  • T.N. Salthouse and B.F. Matlaga, J. Biomatls. Med. Dev, and Art. Orgs 3(1), 47-56, (1975).

    Google Scholar 

  • Santini, Cima and Langer, Nature 397, 335-338 (1999).

    Google Scholar 

  • D.W. Scharp, N.S. Mason, and R.E. Sparks, World J. Surg. 8, 221-229 (1984).

    Google Scholar 

  • R. Schnabel and P. Langer, J. Chromatography 544, 137-146, (1991).

    Google Scholar 

  • G. Scott and M. Mowrey-Mckee, Current Eye Research 15(5), 461-466, (1996).

    Google Scholar 

  • R.K. Shah, Int. J. Heat Mass Transfer 18, 849-62, (1975).

    Google Scholar 

  • S. Shoji, M. Esashi, and T. Matsuo, Sensors Actuators 14, 101-7, (1988).

    Google Scholar 

  • C.M. Strasser, P.H. Dejardin, J.C. Galin, and A. Schmitt, M. J. Biomed. Mater. Res. 23, 1385-1393, (1989).

    Google Scholar 

  • M.E. Sugamori, ASAIO Trans. 35, 179-799, (1989).

    Google Scholar 

  • T. Tang, G. Ocvirk, and D.J. Harrison, Tech. Digest IEEE Transducers 523-6, (1997).

  • J.A. Tesk, MRS Symp. Proc. 110, 177-84, (1989).

    Google Scholar 

  • Y.C. Tseng and K. Park, J. Biomed. Mater Res. 26, 373-91, (1992).

    Google Scholar 

  • J.K. Tu, T. Huen, R. Szema, and M. Ferrari, SPIE Proc. of Micro-and Nanofabricated Structures and Devices for Biomedical Environmental Applications, Ed. P.L. Gourley, 3258, 148-155, (1998).

  • T.C. Turner, C. Chang, F. Fang, S.L. Brandow, and D.B. Murphy, Biophysical Journal 69, 2782-2789, (1995).

    Google Scholar 

  • A. Ulman, Chemical Reviews 96, 1533-1554, (1996).

    Google Scholar 

  • W.D. Volkmuth, T. Duke, R.H. Austin, and E.C. Cox, Proc. Natl. Acad. Sci. USA 92(15), 6887-6891 (1995).

    Google Scholar 

  • Y. Wang and M. Ferrari, SPIE Proc. of Micro-and Nanofabricated Structures and Devices for Biomedical Environmental Applications, Ed. P.L. Gourley, 3258, 20-28, (1998).

  • T. Wang, I. Lacik, M. Brissova, A. Anilkumar, A. Prokop, D. Hundeler, R. Green, K. Shahrokhi, and A. Powers, Nature Biotechnology 15, 358-362, (1997).

    Google Scholar 

  • Y. Wang, Surface Modification of Polymeric Membranes and Silicon Filters, Ph. D. thesis, University of California, Berkeley, (1998).

    Google Scholar 

  • S.R. Wasserman, Y.T. Tao, and G.M. Whitesides, Langmuir 5, 1074-1081, (1989).

    Google Scholar 

  • C.J. Weber, Pancreatic Islet Cell Transplantation, C. Ricordi, ed., 177-189, (1991).

  • J.R. Webster and C.H. Mastrangelo, Tech. Digest IEEE Transducers, 503-6, (1997).

  • R.A. Williams and H.W. Blanch, Biosensors and Bioelectronics 9, 159-167, (1994).

    Google Scholar 

  • K.D. Wise, Annual Conference of the IEEE Engineering in Medicine and Biology Society 12(5), 2334-2335 (1990).

    Google Scholar 

  • A.T. Wooley and R.A. Mathies, Proc. Natl. Acad. Sci. USA 91, 11348-11352 (1994).

    Google Scholar 

  • A.T. Woolley, G.F. Sensabaugh, and R.A. Mathies, Analytical Chemistry 69, 2181-6, (1997).

    Google Scholar 

  • M. Zhang and M. Ferrari, Biotech. Bioeng. 56, 618-625, (1997).

    Google Scholar 

  • M. Zhang and M. Ferrari, Biomedical Microdevices 1(1), 81-89 (1998b).

    Google Scholar 

  • M. Zhang and M. Ferrari, “Enhanced blood compatibility of silicon coated with a self-assembled poly(ethylene glycol) and monomethoxpoly(ethylen glycol)”. In: Gourley, P. editor. Micro and nanofabricated electro-optical-mechanical systems for biomedical and environmental application. 1998a. SPIE Proceeding Series. 15-19.

  • Miqin Zhang, Tejal Desai, and Mauro Ferrari, Biomaterials, 19, 953-960, (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, T.A., Hansford, D.J., Kulinsky, L. et al. Nanopore Technology for Biomedical Applications. Biomedical Microdevices 2, 11–40 (1999). https://doi.org/10.1023/A:1009903215959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009903215959

Navigation