Skip to main content
Log in

Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Micromachining technologies were established to fabricate microelectrode arrays and devices for interfacing parts of the central or peripheral nervous system in case of neuronal disorders. The devices were part of a neural prosthesis that allows simultaneous multichannel recording and multisite stimulation of neurons. Overcoming the brittle mechanics of silicon, we established a process technology to fabricate light-weighted and highly flexible polyimide based devices. Concerning the challenging housing demands close to the nerve to prevent mechanical induced nerve traumatization, we integrated interconnects to decouple the nerve interface from plugs and signal processing electronics. Hybrid integration with a new assembling technique—the MicroFlex interconnection (MFI)—has been applied for the connection of the flexible microsystems to silicon microelectronics. In this paper, we present different shapes and applications of the flexible electrodes: sieve electrodes for regeneration studies, cuff electrodes for interfacing peripheral nerves, and a retina implant for ganglion cell stimulation. The discussion is focused on electrode and material properties and the hybrid assembly of a fully implantable neural prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Akin, K. Najafi, R.H. Smoke, and R.M. Bradley, IEEE Trans. Biomed. Eng. 41, 305-313 (1994).

    Google Scholar 

  2. T. Akin, B. Ziaie, S.A. Nikles, and K. Najafi, IEEE Trans. Biomed. Eng. 46(4), 471-480 (1999).

    Google Scholar 

  3. A. Bragin, J. Hetke, C.L. Wilson, D.J. Anderson, J. Engel, and G. Buzsáki, J. Neurosci. Meth. 98, 77-82 (2000).

    Google Scholar 

  4. H. Beutel, T. Stieglitz and J.-U. Meyer, in Smart Structures and Materials 1988: Smart Electronics and MEMS, Vijay K. Varadan, Paul J. McWhorter, Richard A. Singer, Michael J. Vellekoop (eds), Proceedings of SPIE 3328, 174-182 (1998).

  5. H. Beutel, T. Stieglitz, O. Scholz, and J.-U. Meyer, Proc. of the IEEE Second International Workshop on Chip-Package Co-Design (CPD 2000), March 14–15, 2000, Zurich/Switzerland, pp. 9-14 (2000).

  6. A. Bolz. Die Bedeutung der Phasengrenze zwischen alloplastischen Festkörpern und biologischen Geweben für die Elektrostimulation. (Fachverlag Schiele und Schön, Berlin, 1995).

    Google Scholar 

  7. G.S. Brindley, C.C. Polkey, D.N. Rushton, and L. Cardozo, J. Neurol. Neurosurg. Psychiat. 49, 1104-1114 (1986).

    Google Scholar 

  8. W.H. Dobelle, ASAIO J. 46(1), 3-9 (2000).

    Google Scholar 

  9. D.J. Edell, J.N. Churchill, and I.M. Gourley, Biomat., Med. Dev., Art. Org. 10(2), 103-122 (1982).

    Google Scholar 

  10. D.J. Edell, IEEE Trans. Biomed. Eng. 33(2), 203-214 (1986).

    Google Scholar 

  11. H. Gerding, S. Taneri, F.P. Benner, J.-U. Meyer, T. Stieglitz, S. Kupich, and C.E. Uhlig, in Orloff, C. Kohnen, T, and Wenzel, M, (Hrsg:) 13. Jahrestagung der DGII. (Springer Verlag, Berlin, Heidelberg, 2000a) pp. 349-355.

    Google Scholar 

  12. H. Gerding, R. Hornig, C. Köhler, S. Taneri, F.P. Benner, B. Niggemann, C.E. Uhlig, T. Stieglitz, J.-U. Meyer, and R. Eckmiller, Invest. Ophthalmol. Vis. Sci. 41, S860 (2000b).

    Google Scholar 

  13. H.S. Haggerty and H.S. Lusted, Acta Otolaryngol. 107, 13-22 (1989).

    Google Scholar 

  14. M.K. Haugland and T. Sinkjaer, IEEE Trans. Rehab. Eng. 3, 307-317 (1995).

    Google Scholar 

  15. J.F. Hetke, K. Najafi, and K.D. Wise, Sensors and Actuators A21–A23, 999-1002 (1990).

    Google Scholar 

  16. G.E. Loeb and R.A. Peck, J. Neurosci. Meth. 64, 95-103 (1996).

    Google Scholar 

  17. K. Najafi, J. Jin, and K.D. Wise, IEEE Trans. Biomed. Eng. 37, 1-11 (1990).

    Google Scholar 

  18. G.G. Naples, J.T. Mortimer, A. Scheiner, and J.D. Sweeney, IEEE Trans. Biomed. Eng. 35, 905-916 (1988).

    Google Scholar 

  19. X. Navarro, S. Calvet, M. Butí, N. Gómez, E. Cabruja, P. Garrido, R. Villa, and E. Valderrama, Restor. Neurol. Neurosci. 9, 151-160 (1996).

    Google Scholar 

  20. X. Navarro, S. Calvet, F.J. Rodríguez, T. Stieglitz, C. Blau, M. Butí, E. Valderrama, and J.-U. Meyer. J. Peripheral Nervous System 3(2), 91-101 (1998).

    Google Scholar 

  21. X. Navarro, F.J. Rodríguez, D. Ceballos, E. Valderrama, M. Schuettler, and T. Stieglitz, Exp. Neurol. 163, 307-308 (2000).

    Google Scholar 

  22. J.L. Perlman, A.Y. Chow, and N.S. Peachey, Invest. Ophthal. and Vis. Sci. 37,(Suppl.), 96 (1996).

    Google Scholar 

  23. R.R. Richardson, J.A. Miller, and W.M. Reichert, J. Biomat. 14, 627-635 (1993).

    Google Scholar 

  24. J.F. Rizzo, S. Miller, T. Denison, T. Herndon, and J.L. Wyatt, Invest. Ophthal. and Vis. Sci. 37,(Suppl.), 707 (1996).

    Google Scholar 

  25. F.J. Rodríguez, D. Ceballos, M. Schuettler, E. Valderrama, T. Stieglitz, and X. Navarro, J. Neuroscience Methods 98, 105-118 (2000).

    Google Scholar 

  26. S.S. Stensaas and L.J. Stensaas, Acta Neuropath. (Berl.) 41, 145-155 (1978).

    Google Scholar 

  27. T. Stieglitz, H. Beutel, R. Keller, C. Blau, and J.-U. Meyer, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2307-2310, 1997.

  28. P. Walter, P. Szurman, N. Peixoto, S. Strassburger, H.K. Trieu, L. Ewe, T. Stieglitz, J.-U. Meyer, and K. Heimann, Invest. Ophthalmol. Vis. Sci. 39(4), S990 (1998).

    Google Scholar 

  29. C. Veraart, J. Delbeke, M.-C. Wanet-Defalque, A. Vanlierde, G. Michaux, S. Parrini, O. Glineur, M. Verkeysen, C. Trullemans, and J.T. Mortimer, Proc. 4th Ann. Int. Conf. Int. Funct. Electr. Stim. Soc. 57-59 (1999).

  30. W. Winkelmüller, Der Schmerz 5, 243-246 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stieglitz, T., Beutel, H., Schuettler, M. et al. Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces. Biomedical Microdevices 2, 283–294 (2000). https://doi.org/10.1023/A:1009955222114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009955222114

Navigation