Skip to main content
Log in

About Complex Heat Capacities and Temperature-Modulated Calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With increasing use of temperature-modulated calorimetry, TMC, it is has been proposed to use a complex heat capacity for the description of the response of samples to periodic temperature changes. In this article the ramifications of this approach are discussed on the basis of irreversible thermodynamics. Experimental results are summarized which describe heat capacities of liquids and solids, as well as TMC during transitions. It is concluded that the complex heat capacity is of limited value. Solids and liquids have no dissipative (imaginary) contributions. In the glass transition, the thermal response is nonlinear, so that a detailed kinetic model (in real notation) is more advantageous to describe the heat capacity. The crystallization is often so far from equilibrium that it is not modulated. During melting and chemical reactions the heat flow is frequently so large, that steady state is lost and complex heat capacity is of questionable value, even if modulation is accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. see, for example R. Kubo, M. Toda and N. Hashitsume, ‘Statistical Physics II’, Springer, Berlin, 1985.

    Google Scholar 

  2. see, for example, Schawe, J. E. K., Thermochim. Acta, 261 (1995) 183.

    Article  CAS  Google Scholar 

  3. M. Reading, Trends in Polymer Sci., 8 (1993) 248.

    Google Scholar 

  4. B. G. Sumpter, D. W. Noid, G. L. Liang and B. Wunderlich, Adv. Polymer Sci., 116 (1994) 27.

    Article  CAS  Google Scholar 

  5. M. Reading, D. Elliot and V. L. Hill, J. Thermal Anal., 40 (1993) 949; P. S. Gill, S. R. Sauerbrunn and M. Reading, ibid., 931.

    CAS  Google Scholar 

  6. B. Wunderlich, ‘Thermal Analysis’, Academic Press, Boston, 1990.

    Google Scholar 

  7. B. Wunderlich, D. M. Bodily and M. H. Kaplan, J. Appl. Phys., 35 (1964) 95.

    Article  CAS  Google Scholar 

  8. B. Wunderlich, A. Boller, I. Okazaki and S. Kreitmeier, Thermochim. Acta, 282/283 (1996) 143.

    Article  CAS  Google Scholar 

  9. B. Wunderlich, Y. Jin and A. Boller, Thermochim. Acta, 238 (1994) 277.

    Article  CAS  Google Scholar 

  10. see, for example F. O. Rice, Phys. Rev., 31 (1928) 691; or J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, ‘Molecular Theory of Gases and Liquids’, J. Wiley and Sons, New York, 1954.

    Article  Google Scholar 

  11. N. Hirai and H. Eyring, J. Appl. Phys., 29 (1958) 810; J. Polymer Sci., 37 (1959) 51.

    Article  CAS  Google Scholar 

  12. B. Wunderlich, A. Boller, I. Okazaki and S. Kreitmeier, J. Thermal Anal., 47 (1996) 1013.

    Article  CAS  Google Scholar 

  13. I. Prigogine, ‘Introduction to Thermodynamics of Irreversible Processes’, Interscience, New York, 1961.

    Google Scholar 

  14. E. A. Guggenheim, ‘Thermodynamics.’ North-Holland Publ. Co., Amsterdam, 1959.

    Google Scholar 

  15. J. Meixner, Z. Physik, 219 (1969) 79.

    Article  CAS  Google Scholar 

  16. B. Wunderlich, ‘Thermal Analysis’, Academic Press, Boston, 1990.

    Google Scholar 

  17. M. Varma-Nair and B. Wunderlich, J. Thermal Anal., 46 (1996) 879.

    Article  CAS  Google Scholar 

  18. A. Boller, I. Okazaki, K. Ishikiriyama, G. Zhang, and B. Wunderlich, J. Thermal Anal., 49 (1997) 1081.

    Article  CAS  Google Scholar 

  19. D. A. Ditmars, S. Ishihara, S. S. Chang, G. Bernstein and E. D. West, J. Res. Natl. Bur. Stand., 87 (1982) 159.

    CAS  Google Scholar 

  20. P. F. Sullivan and G. Seidel, Phys. Letters, 25(A) (1967) 229; Phys. Rev., 173 (1968) 679.

    CAS  Google Scholar 

  21. A. Boller, Y. Jin and B. Wunderlich, J. Thermal Anal., 42 (1994) 307.

    CAS  Google Scholar 

  22. M. Reading, B. Hahn and B. S. Crowe, US Patent 5.224.775 (July 6, 1993).

  23. B. Wunderlich, J. Thermal Anal., 48 (1997) 207.

    Article  CAS  Google Scholar 

  24. I. Okazaki and B. Wunderlich, Macromolecules, 30 (1997) 1758.

    Article  CAS  Google Scholar 

  25. A. Boller, C. Schick and B. Wunderlich, Thermochim. Acta, 266 (1995) 97.

    Article  CAS  Google Scholar 

  26. I. Okazaki and B. Wunderlich, J. Polymer Sci., Part B: Polymer Phys., 34 (1996) 2941.

    Article  CAS  Google Scholar 

  27. B. Wunderlich and I. Okazaki, J. Thermal Anal., 49 (1997) 57.

    Article  CAS  Google Scholar 

  28. J. M. Hutchinson and S. Montserrat, Thermochim. Acta, 286 (1996) 263.

    Article  CAS  Google Scholar 

  29. L. C. Thomas, I. Okazaki and B. Wunderlich, Thermochim. Acta, 291 (1997) 85.

    Article  CAS  Google Scholar 

  30. G. Van Assche, A. Van Hemelrijck, H. Rahier and B. Van Mele, Thermochim. Acta, 268 (1995) 121; 286 (1996) 209.

    Article  Google Scholar 

  31. K. Ishikiriyama, A. Boller, and B. Wunderlich, J. Thermal Anal., 50 (1997) 547.

    Article  CAS  Google Scholar 

  32. W. Chen and B. Wunderlich, Proc. 25th NATAS Conf. in McLean, Va., Sept. 7–9. 1997, R. G. Morgan, ed., 637; Thermochim. Acta., submitted for publication in (1998).

  33. B. Wunderlich, ‘Macromolecular Physics, Vol. VIII, Crystal Melting’, Academic Press, New York, 1980.

    Google Scholar 

  34. K. Ishikiriyama and B. Wunderlich, Macromolecules, 30 (1997) 4126; J. Polymer Sci., Part B. Polymer Phys., 35 (1997) 1877.

    Article  CAS  Google Scholar 

  35. I. Okazaki and B. Wunderlich, Macromol. Chem. Phys. Rapid Comm., 18 (1997) 313.

    Article  CAS  Google Scholar 

  36. H. Baur, Z. Naturforschung, 53A (1998) 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baur, H., Wunderlich, B. About Complex Heat Capacities and Temperature-Modulated Calorimetry. Journal of Thermal Analysis and Calorimetry 54, 437–465 (1998). https://doi.org/10.1023/A:1010126005720

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010126005720

Navigation