Skip to main content
Log in

Static and Cyclic Oxidation of Ti–44Al and Ti–44Al–xNb Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Binary, Ti–44Al, and ternary, Ti–44Al–xNb (x=4, 8, and 11) alloys were subjected to static and cyclic oxidation in air up to a period of 1 week at 850 and 950°C. The oxidation behavior is characterized by plotting a graph between weight gain as a function of time or number of cycles. The binary alloy undergoes the most severe oxidation while Nb provides resistance to oxidation, which increases with an increase in concentration. Oxides were examined by SEM and EDX was used to perform chemical analysis. Alternate oxide layers rich in alumina and titania were found along with an aluminum-depleted zone underneath the oxide scale. Different microstructures were observed for the alloys subjected to static- and cyclic-heating modes. Defects like twins and stacking faults were generated after a static mode of heating, while transformation products at the grain boundaries dominate the microstructures for samples subjected to cyclic heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. K. Varma, R. Mahapatra, C. Hernandez, A. Chan, and E. Corral, Mater. Manuf. Processes 14, 821 (1999).

    Google Scholar 

  2. S. K. Varma, C. Hernandez, E. Corral, A. Chan, and R. Mahapatra, in Gamma Titanium Aluminides, Y.-W. Kim, D. M. Dimiduk, and M. H. Loretto, eds. (TMS, Warrendale, PA, 1999), pp. 823–828.

    Google Scholar 

  3. M. F. Stroosnijder, V. A. C. Haanappel, and H. Clemens, Mater. Sci. Eng. A239–240, 842 (1997).

    Google Scholar 

  4. A. Rahmel and P. J. Spencer, Oxid. Met. 35, 53 (1991).

    Google Scholar 

  5. S. M. L. Sastry and H. A. Lipsitt, in Proceedings of 4th International Conference on Titanium, H. Kimura and O. Izumi, eds. (Kyoto, Japan, 1980), p. 1231.

  6. N. Zheng, W. J. Quadakkers, A. Gil, and H. Nickel, Oxid. Met. 44, 477 (1995).

    Google Scholar 

  7. N. Zheng, W. Fischer, H. Grubmeier, V. Shemet, and W. J. Quadakkers, Scripta Metall. Mater. 33, 47 (1995).

    Google Scholar 

  8. J. M. Rakowski, F. S. Pettit, G. H. Meier, D. Dettenwanger, E. Schumann, and M. Ruhle, Scripta Metall. Mater. 33, 997 (1995).

    Google Scholar 

  9. Y. F. Cheng, F. Dettenwanger, J. Mayer, E. Schumann, and R. Ruhle, Scripta Mater. 33, 707 (1996).

    Google Scholar 

  10. M. Grob, V. Kolarik, and A. Rahmel, Oxid. Met. 48, 171 (1997).

    Google Scholar 

  11. R. W. Beye and R. Gronsky, Acta Metall. Mater. 42, 1373 (1994).

    Google Scholar 

  12. M. Schmitz-Niederau and M. Schütze, Oxid. Met. 52, 241 (1999).

    Google Scholar 

  13. I. C. I. Okafor and R. G. Reddy, JOM 78, 35 (1999).

    Google Scholar 

  14. M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci, JOM 77, 46 (1996).

    Google Scholar 

  15. N. S. Choudhury, H. C. Graham, and J. W. Hinze, in Properties of High Temperature Alloys, Z. A. Foroulis and F. S. Pettit, eds. (The Electrochemical Society, Pennington, NJ, 1976), p. 668.

    Google Scholar 

  16. N. S. Jacobson, M. P. Brady, and G. M. Mehrotra, Oxid. Met. 52, 537 (1999).

    Google Scholar 

  17. M. Eckert, D. Kath, and K. Hilpert, Metall. Mater. Trans. 30A, 1315 (1999).

    Google Scholar 

  18. C. Leyens, Oxid. Met. 52, 475 (1999).

    Google Scholar 

  19. C. Leyens and H. Gedanitz, Scripta Mater. 41, 901 (1999).

    Google Scholar 

  20. M. F. Stroosnijder, N. Zheng, W. J. Quadakkers, R. Hofman, A. Gil, and F. Lanza, Oxid. Met. 46, 19 (1996).

    Google Scholar 

  21. J. D. Sunderkotter, V. A. C. Hannappel, and M. F. Stroosnijder, in Microscopy of Oxidation, Vol. III, S. B. Newcomb and J. A. Little, eds. (Institute of Materials, London, 1997), p. 287.

    Google Scholar 

  22. S. K. Varma, A. Chan, C. Hernandez, E. Corral, R. N. Mahapatra, and V. Agarwala, in Intermetallics and Superalloys, Euromat. vol. 10, D. G. Morris, S. Naka, and P. Carson, eds. Wiley-VCH Verlag Gmbh, D-69469 Weinheim (Federal Republic of Germany, 2000), p. 35.

    Google Scholar 

  23. S. K. Varma, C. Hernandez, and R. N. Mahapatra, J. Mater. Sci., submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, S.K., Chan, A. & Mahapatra, B.N. Static and Cyclic Oxidation of Ti–44Al and Ti–44Al–xNb Alloys. Oxidation of Metals 55, 423–435 (2001). https://doi.org/10.1023/A:1010351613733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010351613733

Navigation