Skip to main content
Log in

Modeling Global Climate–Vegetation Interactions in a Doubled CO2 World

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A coupled global vegetation–climate model is used to investigatethe effects of vegetation feedbacks on climate change due to doubling atmospheric CO2. The Equilibrium Vegetation Ecology model (EVE)simulates global terrestrial vegetation and is designed for interactive coupling with climate models. Terrestrial vegetation is resolved into110 plant life forms, which represent groups of species with similar physiognomic characteristics and migrational responses to climate change,thus preserving the spatial integrity of each life-form distribution as climate changes. EVE generates a quantitative description of plant community structure definedby total vegetation cover and the fractional covers of life formsas a function of climate. The equilibrium distribution of each life form is predicted from monthly mean temperature, precipitation, and relative humidity,based on observed correlations with the present climate.The fractional covers of the life forms at each site are determined by parameterizations of dynamic ecological processes: competition for sunlight, disturbances by fire and treefall. A second model (LEAF) simulates the seasonal phenology of EVE's plant canopies, driven by the daily climate at each location, and provides the physical quantities needed for coupling vegetation and climate models.Two pairs of coupled EVE-GCM simulations are described, both with 1× and 2×CO2:the first with prescribed fixed vegetation, and the other with fully interactive vegetation. Large effects of vegetation feedbacks in the interactive simulations are found at the northern and southern ecotones of the boreal forest. Poleward migration of boreal forests into tundra caused by warming due to elevated CO2 is enhanced by a strong snow-masking albedo feedback, consistent with earlier studies. The invasion of temperate grasslands into the southern boreal forest is also enhanced due to summer warming spreading from the north, despitethe opposing sense of the grassland-forest albedo feedback. Desertification of subtropical grasslands is mostly reversed in the interactive simulations due to enhanced monsoonal precipitation. These interactions and other climate and plant community changes caused by climate-vegetation feedbacks are discussed on a regional basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beerling, D. J., Woodward, F. I., Lomas, M., and Jenkins, A. J.: 1997, ‘Testing the Responses of a Dynamic Global Vegetation Model to Environmental Change: A Comparison of Observations and Predictions’, Global Ecol. Biogeog. Lett. 6,439–450.

    Google Scholar 

  • Betts, R. A., Cox, P. M., Lee, S. E., and Woodward, F. I.: 1997, ‘Contrasting Physiological and Structural Vegetation Feedbacks in Climate Change Simulations’,Nature 387,796–799.

    Google Scholar 

  • Bonan, G. B., Pollard, D., and Thompson, S. L.: 1992, ‘Effects of Boreal Forest Vegetation on Global Climate’, Nature 359,716–718.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallace, J. R.: 1972a, ‘Some Ecological Consequences of a Computer Model of Forest Growth’, J. Ecol. 60, 849–872.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallace, J. R.: 1972b, ‘Rationale, Limitations and Assumptions of a Northeast Forest Growth Simulator’,IBM J. Res. Develop. 16,101–116.

    Google Scholar 

  • Box, E. O.: 1981a,Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography, Dr. W. Junk Publishers, The Hague, p. 258.

    Google Scholar 

  • Box, E. O.: 1981b, ‘Predicting Physiognomic Vegetation Types with Climate Variables’, Vegetatio 45,127–139.

    Google Scholar 

  • Charney, J., Stone, P. H., and Quirk, W. J.: 1975, ‘Drought in the Sahara: A Biogeophysical Mechanism’,Science 187,434–435.

    Google Scholar 

  • Claussen, M. and Gayler, V.: 1997, ‘The Greening of the Sahara during the Mid-Holocene: Results of an Interactive Atmosphere-Biome Model’,Global Ecol. Biogeog. Lett. 6, 369–377.

    Google Scholar 

  • Claussen, M., Brovkin, V., Ganopolski, A., Kubatzki, C., and Petoukhov, V.: 1998, ‘Modelling Global Terrestrial Vegetation–Climate Interactions’, Phil. Trans. Roy. Soc. London B 353,53–63.

    Google Scholar 

  • Costa, M. H. and Foley, J. A.: 1999, ‘Combined Effects of Deforestation and Doubled Atmospheric CO2 Concentrations on the Climate of Amazonia’, J. Climate 13,18–34.

    Google Scholar 

  • Culotta, E.: 1995, ‘Will Plants Profit from High CO2?’,Science 268,654–656.

    Google Scholar 

  • Davis, M. B.: 1983, ‘Quaternary History of Deciduous Forests of Eastern North America and Europe’, Ann. Missouri Bot. Gard. 70,550–563.

    Google Scholar 

  • DeConto, R. M., Brady, E. C., Bergengren, J., and Hay, W. W.: 2000, ‘Late Cretaceous Climate, Vegetation and Ocean Interactions’, in Huber, B. T., MacLeod, K. G., and Wing, S. L. (eds.), Warm Climates in Earth History,Cambridge University Press, pp. 275–296.

  • de Noblet, N. I., Prentice, I. C., Joussaume, S., Texier, D., Botta, A., and Haxeltine, A.: 1996, ‘Possible Role of Atmosphere-Biosphere Interactions in Triggering the Last Glaciation’, Geophys. Res. Lett. 23, 3191–3194.

    Google Scholar 

  • Doherty, R., Kutzbach, J., Foley, J., and Pollard, D.: 2000, ‘Fully-Coupled Climate/Dynamical Vegetation Model Simulations over Northern Africa during the Mid-Holocene’,Clim. Dyn. 16, 561–573.

    Google Scholar 

  • Foley, J. A., Levis, S., Costa, M. H., Cramer, W., and Pollard, D.: 2000, ‘Incorporating Dynamic Vegetation Cover within Global Climate Models’, Ecol. Appl. 10,1620–1632.

    Google Scholar 

  • Foley, J. A., Levis, S., Prentice, I. C., Pollard, D., and Thompson, S. L.: 1998, ‘Coupling Dynamic Models of Climate and Vegetation’,Global Change Biol. 4,561–579.

    Google Scholar 

  • Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., and Haxeltine, A.: 1996, ‘An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics’,Global Biogeochem. Cycles 10,603–628.

    Google Scholar 

  • Friend, A. D., Stevens, A. K., Knox, R. G., and Cannell, M. G. R.: 1997, ‘A Process-Based, Terrestrial Biosphere Model of Ecosystem Dynamics (Hybrid v3.0)’,Ecol. Model. 95, 249–287.

    Google Scholar 

  • Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V.: 1998, ‘The Influence of Vegetation-Atmosphere-Ocean Interaction on Climate during the Mid-Holocene’, Science 280, 1916–1919.

    Google Scholar 

  • Haxeltine, A. and Prentice, I. C.: 1996, ‘BIOME3: An Equilibrium Terrestrial Biosphere Model Based on Ecophysiological Constraints, Resource Availability and Competition among Plant Functional Types’, Global Biogeochem. Cycles 10,693–709.

    Google Scholar 

  • Henderson-Sellers, A.: 1993, ‘Continental Vegetation as a Dynamic Component of a Global Climate Model: A Preliminary Assessment’, Clim. Change 23, 337–378.

    Google Scholar 

  • Hewitt, C. D. and Mitchell, J. F. B.: 1998, ‘A Fully Coupled GCM Simulation of the Climate of the Mid-Holocene’, Geophys. Res. Lett. 25, 361–364.

    Google Scholar 

  • Holdridge, L. R.: 1947, ‘Determination of World Plant Formations from Simple Climatic Data’, Science 105,267–268.

    Google Scholar 

  • Jolly, D. and Haxeltine, A.: 1997, ‘Effect of Low Glacial Atmospheric CO2 on Tropical African Montane Vegetation’, Science 276,786–788.

    Google Scholar 

  • Koppen, W.: 1931,Grunde der Klimakunde,Walter de Gruyter, Berlin, Germany.

    Google Scholar 

  • Koppen, W.: 1936, ‘Das geographisches System der Klimate’, in Koppen, W. and Geiger, R. (eds.),Handbuch der Klimatologie, Volume I,Gegruder Borntraeger, Berlin.

    Google Scholar 

  • Kuchler, A. W.: 1990, ‘World Map of Natural Vegetation’, in Goode' World Atlas, 16th edn., Rand McNally, pp. 16–17.

  • Kutzbach, J. E. and Liu, Z.: 1997, ‘Response of the African Monsoon to Orbital Forcing and Ocean Feedbacks in the Middle Holocene’, Science 278,440–443.

    Google Scholar 

  • Kutzbach, J. E., Bonan, G., Foley, J. A., and Harrison, S. P.: 1996, ‘Vegetation and Soil Feedbacks on the Response of the African Monsoon to Orbital Forcing in the Early to Middle Holocene’, Nature 384,623–626.

    Google Scholar 

  • Lean, J. and Rowntree, P. R.: 1997, ‘Understanding the Sensitivity of a GCM Simulation of Amazonian Deforestation to the Specified Vegetation and Soil Characteristics’, J. Climate 10, 1216–1235.

    Google Scholar 

  • Leemans, R. and Cramer, W. P.: 1990, The IIASA Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness of a Global Terrestrial Grid,WP-41, International Institute of Applied Systems Analyses, Laxenburg Working Paper, IIASA, Laxenburg, Austria, p. 60.

    Google Scholar 

  • Legates, D. R. and Willmott, C. J.: 1990a, ‘Mean Seasonal and Spatial Variability in Global Surface Air Temperature’, Theor. Appl. Climatol. 41, 11–21.

    Google Scholar 

  • Legates, D. R. and Willmott, C. J.: 1990b, ‘Mean Seasonal and Spatial Variability in Gauge-Corrected Global Precipitation’,Int. J. Clim.10,111–127.

    Google Scholar 

  • Levis, S., Foley, J. A., and Pollard, D.: 1999a, ‘Potential High-Latitude Vegetation Feedbacks on CO2-Induced Climate Change’, Geophys. Res. Lett. 26,747–750.

    Google Scholar 

  • Levis, S., Foley, J. A., and Pollard, D.: 1999b, ‘CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum’, J. Geophys. Res. 104,31191–31198.

    Google Scholar 

  • Levis, S., Foley, J. A., Brovkin, V., and Pollard, D.: 1999c, ‘On the Stability of the High-Latitude Climate-Vegetation System in a Coupled Atmosphere-Biosphere Model’, Global Ecol. Biogeog. 8,489–500.

    Google Scholar 

  • Levis, S., Foley, J. A., and Pollard, D.: 2000, ‘Large-Scale Vegetation Feedbacks on a Doubled CO2 Climate’,J. Climate 13,1313–1325.

    Google Scholar 

  • Lieth, H. F. H.: 1975, ‘Modelling the Primary Productivity of the World’, in Lieth, H. and Whittaker, R. H. (eds.), Primary Productivity of the Biosphere. Ecological Studies 14,Springer-Verlag, pp. 275–296.

  • Matthews, E.: 1983, ‘Global Vegetation and Land Use: New High Resolution Data Bases for Climate Studies’,J. Clim. Appl. Meteorol. 22,474–487.

    Google Scholar 

  • Monserud, R. A. and Leemans, R.: 1992, ‘Comparing Global Vegetation Maps with the Kappa Statistic’,Ecol. Model. 62, 275–293.

    Google Scholar 

  • Neilson, R. P.: 1995, ‘A Model for Predicting Continental-Scale Vegetation Distribution and Water Balance’,Ecol. Appl. 5,362–385.

    Google Scholar 

  • Pollard, D. and Thompson, S. L.: 1995, ‘Use of a Land-Surface-Transfer Scheme (LSX) in a Global Climate Model: The Response to Doubled Stomatal Resistance’,Global Planet. Change 10, 129–161.

    Google Scholar 

  • Pollard, D., Bergengren, J. C., Stillwell-Soller, L. M., Felzer, B., and Thompson, S. L.: 1998, ‘Climate Simulations for 10000 and 6000 Years BP Using the GENESIS Global Climate Model’, Palaeoclimates – Data Modelling 2, 183–218.

    Google Scholar 

  • Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: 1992, ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’,J. Biogeogr. 19, 117–134.

    Google Scholar 

  • Robinson, D. A. and Kukla, G.: 1985, ‘Maximum Surface Albedo of Seasonally Snow-Covered Lands in the Northern Hemisphere’,J. Clim. Appl. Meteorol. 24,402–411.

    Google Scholar 

  • Schutz, C. and Gates, W. L.: 1971,Global Climatic Data for Surface, 800 mb, 400 mb: January,The Rand Corporation, R-915-ARPA.

  • Schutz, C. and Gates, W. L.: 1972,Global Climatic Data for Surface, 800 mb, 400 mb: July, The Rand Corporation, R-1029-ARPA.

  • Schutz, C. and Gates, W. L.: 1973,Global Climatic Data for Surface, 800 mb, 400 mb: April, The Rand Corporation, R-1317-ARPA.

  • Schutz, C. and Gates, W. L.: 1974,Global Climatic Data for Surface, 800 mb, 400 mb: October, The Rand Corporation, R-1425-ARPA.

  • Texier, D., de Noblet, N., Harrison, S. P., Haxeltine, A., Jolly, D., Joussaume, S., Laarif, F., Prentice, I. C., and Tarasov, P.:1997, ‘Quantifying the Role of Biosphere-Atmosphere Feedbacks in Climate Change: Coupled Model Simulations for 6000 Years BP and Comparison with Paleodata for Northern Eurasia and Africa’,Clim. Dyn. 13,865–882.

    Google Scholar 

  • Thompson, S. L. and Pollard, D.: 1995a, ‘A Global Climate Model (GENESIS) with a Land-Surface Transfer Scheme (LSX). Part I: Present Climate Simulation’,J. Climate 8,732–761.

    Google Scholar 

  • Thompson, S. L. and Pollard, D.: 1995b, ‘A Global Climate Model (GENESIS) with a Land-Surface Transfer Scheme (LSX). Part II: CO2 Sensitivity’,J. Climate 8,1104–1121.

    Google Scholar 

  • Thornthwaite, C. W. and Mather, J. R.: 1957, ‘Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance’, Climatology 10, 185–311.

    Google Scholar 

  • VEMAP Members: 1995, ‘VEMAP: A Comparison of Biogeography and Biogeochemistry Models in the Context of Global Climate Change’,Global Biogeochem. Cycles 9,407–437.

    Google Scholar 

  • Webb, T. III: 1987, ‘The Appearance and Disappearance of Major Vegetational Assemblages: Long-Term Vegetational Dynamics in Eastern North America’, Vegetatio 69,177–187.

    Google Scholar 

  • Willmott, C. J. and Klink, K.: 1986, ‘A Representation of the Terrestrial Biosphere for Use in Global Climate Studies’, in Proceedings of the ISLSCP Conference, Rome, Italy, December 1985, European Space Agency, Paris, pp.109–112.

    Google Scholar 

  • Woodward, F. I., Smith, T. M., and Emanuel, W. R.: 1995, ‘A Global Land Primary Productivity and Phytogeography Model’, Global Biogeochem. Cycles 9,471–490.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergengren, J.C., Thompson, S.L., Pollard, D. et al. Modeling Global Climate–Vegetation Interactions in a Doubled CO2 World. Climatic Change 50, 31–75 (2001). https://doi.org/10.1023/A:1010609620103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010609620103

Keywords

Navigation