Skip to main content
Log in

Carbon partitioning to cellulose synthesis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

This article discusses the importance and implications of regulating carbon partitioning to cellulose synthesis, the characteristics of cells that serve as major sinks for cellulose deposition, and enzymes that participate in the conversion of supplied carbon to cellulose. Cotton fibers, which deposit almost pure cellulose into their secondary cell walls, are referred to as a primary model system. For sucrose synthase, we discuss its proposed role in channeling UDP-Glc to cellulose synthase during secondary wall deposition, its gene family, its manipulation in transgenic plants, and mechanisms that may regulate its association with sites of polysaccharide synthesis. For cellulose synthase, we discuss the organization of the gene family and how protein diversity could relate to control of carbon partitioning to cellulose synthesis. Other enzymes emphasized include UDP-Glc pyrophosphorylase and sucrose phosphate synthase. New data are included on phosphorylation of cotton fiber sucrose synthase, possible regulation by Ca2+ of sucrose synthase localization, electron microscopic immunolocalization of sucrose synthase in cotton fibers, and phylogenetic relationships between cellulose synthase proteins, including three new ones identified in differentiating tracheary elements of Zinnia elegans. We develop a model for metabolism related to cellulose synthesis that implicates the changing intracellular localization of sucrose synthase as a molecular switch between survival metabolism and growth and/or differentiation processes involving cellulose synthesis. Abbreviations: CesA, cellulose synthase; Csl, cellulose-like synthase (genes); DCB, dichlobenil; DPA, days after anthesis; SPS, sucrose phosphate synthase; SuSy, sucrose synthase; P-SuSy, particulate SuSy; S-SuSy, soluble SuSy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, G.O., Klotke, J. and Sophia, B. 2000. The increase in sucrose synthase activity correlates with a higher content of cellulose in wheat roots suffering from oxygen deficiency. Abstract 1020. In: Proceedings of Plant Biology 2000, 15–19 July, San Diego, CA. American Society of Plant Physiologists, Rockville, MD, [http://www.aspp.org/annual-meeting/pb-2000/2000.htm].

    Google Scholar 

  • Amor, Y., Haigler, C.H., Wainscott, M., Johnson, S. and Delmer, D.P. 1995. A membrane-associated form of sucrose synthase and its potential role synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92: 9353–9357.

    Google Scholar 

  • Andrawis, A., Solomon, M. and Delmer, D.P. 1993. Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J. 3: 763–772.

    Google Scholar 

  • Anguenot, R., Yelle, S. and Nguyen-Quoc, B. 1999. Purification of tomato sucrose synthase phosphorylated isoforms by Fe(III)-immobilized metal affinity chromatography. Arch. Biochem. Biophys. 365: 163–169.

    Google Scholar 

  • ap Rees, T. 1984. Sucrose metabolism. In: D.H. Lewis (Ed.) Storage Carbohydrates in Vascular Plants: Distribution, Physiology, and Metabolism, Cambridge University Press, Cambridge, UK, pp. 53–73.

    Google Scholar 

  • Arabidopsis Genome Initiative. 2001. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Google Scholar 

  • Arioli, T., Peng, L., Betzner, A.S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Höfte, H., Plazinske, R., Birch, R., Cork, A., Glover, J., Redmond, J. and Williamson, R.E. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.

    Google Scholar 

  • Babb, V.M. and Haigler, C.H. 2000. Exploration of a role for sucrose phosphate synthase in cellulose synthesis during secondary cell wall deposition.Abstract 319. In:Proceedings of Plant Biology 2000, 15–19 July, San Diego, CA. American Society of Plant Physiologists, Rockville, MD [http://www.aspp.org/annual-meeting/pb-2000/2000.htm].

    Google Scholar 

  • Basra, A.S. and Malik, C.P. 1984. Development of the cotton fiber. Int. Rev. Cytol. 89:65–113.

    Google Scholar 

  • Basra, A.S., Sarlach, R.S., Nayyar, H. and Malik, C.P. 1990. Sucrose hydrolysis in relation to development of cotton (Gossypium spp.) fibres. Indian J. Exp. Biol. 28: 85–988.

    Google Scholar 

  • Blakeney, A.B., Harris, P.J., Henry, R.J. and Stone, B.A. 1983. Simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Res. 113: 291–299.

    Google Scholar 

  • Blanton, R.L. and Haigler, C.H. 1996. Cellulose biosynthesis. In: M. Smallwood, J.P. Knox and D.J. Bowles (Eds.) Membranes: Specialized Functions in Plants, BIOS Scientific Publishers, Oxford, UK, pp. 57–75.

    Google Scholar 

  • Blanton, R.L. and Northcote, D.H. 1990. A 1,4-β-sc d-glucan synthase system from Dictyostelium discoideum. Planta 180: 324–332.

    Google Scholar 

  • Blumenkrantz. B. and Asboe-Hansen, G. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. 54: 484–489.

    Google Scholar 

  • Brewin, N.J., Butcher, G.W., Galfre, G., Larkins, A.P., Wells, B., Wood, E.A. and Robertson, J.G. 1986. Immunochemical analysis of the legume root nodule. In: T.L. Wang (Ed.) Immunology in Plant Science, Cambridge University Press, Cambridge, UK, pp. 155–170.

    Google Scholar 

  • Brown, R.M. Jr., Saxena, I.M. and Kudlicka, K. 1996. Cellulose biosynthesis in higher plants. Trends Plant Sci. 1: 149–156.

    Google Scholar 

  • Buchala, A.J. 1987. Acid β-fructofuranoside fructohydrolase (in-vertase) in developing cotton (Gossypium arboreum L.) fibres and its relationship to β-glucan synthesis from sucrose fed to the fibre apoplast. J. Plant Physiol. 127: 19–230.

    Google Scholar 

  • Buckeridge, M.S., Vergara, C.E. and Carpita, N.C. 1999. The mechanism of synthesis of a mixed-linkage (1→3), (1→4) β-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol 120: 1105–1116.

    Google Scholar 

  • Burton, R.A., Gibeaut, D.M., Bacic, A., Findlay, K., Roberts, K., Hamilton, A., Baulcombe, D.C. and Fincher, G.B. 2000. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell: 12: 691–706.

    Google Scholar 

  • Carlson, S. J. and Chourey, P. 1996. Evidence for plasma membrane-associated forms of sucrose synthase in maize. Mol. Gen. Genet. 252: 303–310.

    Google Scholar 

  • Carlson, S.J., Chourey, P.S. and Helentjaris, T. 2000. Evidence for a third SuSy gene in maize from analysis of sucrose synthase mutants. Abstract 161. In: Proceedings of Plant Biology 2000, 15–19 July, San Diego, CA. American Society of Plant Physiolo-gists, Rockville, MD [http://www.aspp.org/annual-meeting/pb-2000/ 2000.htm].

  • Carpita, N.C. and Delmer, D.P. 1981. Concentration and metabolic turnover of UDP-glucose in developing cotton fibers. J. Biol. Chem. 256:308–315.

    Google Scholar 

  • Chen, Y.-C. and Chourey, P.S. 1989. Spatial and temporal expression of the two sucrose synthase genes in maize: immunohistological evidence. Theor. Appl. Genet. 78: 553–559.

    Google Scholar 

  • Chengappa, S., Guilleroux, M., Phillips, W. and Shields, R. 1999. Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit. Plant Mol. Biol. 40: 213–221.

    Google Scholar 

  • Chourey P.S., Chen Y.-C. and Miller, M.E. 1991. Early cell de-generation in developing endosperm is unique to the Shrunken mutation in maize. Maydica 36: 141–146

    Google Scholar 

  • Chourey, P.S. and Miller, M.E. 1995. On the role of sucrose synthase in cellulose and callose biosynthesis in plants. In: H.G. Pontis, G.L. Salerno and E.J. Echeverria (Eds.) Sucrose Metabolism, Biochemistry, Physiology, and Molecular Biology,American Society of Plant Physiologists, Rockville, MN, pp. 80–87.

    Google Scholar 

  • Chourey, P.S., Taliercio, E.W., Carlson, S.J. and Ruan, Y.-L. 1998. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol. Gen. Genet. 259: 88–96.

    Google Scholar 

  • Copeland, L. 1990. Enzymes of sucrose metabolism. Meth. Plant Biochem. 3: 74–85.

    Google Scholar 

  • Crespi, M.D., Zabaleta, E.J., Pontis, H.G. and Salerno, G.L. 1991. Sucrose synthase expression during cold acclimation in wheat. Plant Physiol. 96: 887–891.

    Google Scholar 

  • Cui, X., Shin, H., Song, C.C, Laosinchai, W., Amano, Y. and Brown, R.M. Jr. 2001. A putative plant homolog of the yeast β-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta, in press

  • Dancer, J.E., Hazfield, W.D. and Stitt, M. 1990. Cytosolic cycles regulate the accumulation of sucrose in heterotrophic cellsuspension cultures of Chenopodium rubrum. Planta 182: 223–231.

    Google Scholar 

  • D'Aoust, M.-A., Yelle, S. and Nguyen-Quoc, B. 1999. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11: 2407–2418.

    Google Scholar 

  • Delmer, D.P. and Albersheim, P. 1970. The biosynthesis of sucrose and nucleoside diphosphate glucoses in Phaseolus aureus.Plant Physiol. 45: 782–786.

    Google Scholar 

  • Delmer, D.P., Pear, J.R., Andrawis, A. and Stalker, D.M. 1995. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Mol. Gen. Genet. 248: 43–51.

    Google Scholar 

  • Delmer, D.P. and Amor, Y. 1995. Cellulose biosynthesis. Plant Cell 7: 987–1000.

    Google Scholar 

  • Delmer, D.P. 1999a. Cellulose biosynthesis: Exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Mol. Biol. 50: 245–276.

    Google Scholar 

  • Delmer, D.P. 1999b. Cellulose biosynthesis in developing cotton fibers. In: A.S. Basra (Ed.) Cotton Fibers: Developmental Bi-ology, Quality Improvement, and Textile Processing, Haworth Press, New York, pp. 85–112.

    Google Scholar 

  • Dick, P.S. and ap Rees, T. 1976. Sucrose metabolism by roots of Pisum sativum. Phytochemistry 15: 255–259.

    Google Scholar 

  • Dixon, D.C., Seagull, R.W. and Triplett, B.A. 1994. Changes in the accumulation of α-and β-tubulin isotypes during cotton fiber development. Plant Physiol. 105: 1347–1353.

    Google Scholar 

  • Doblin, M.S., De Melis, L., Newbigin, E., Bacic, A. and Read, S.M. 2001. Pollen tubes of Nicotiana alata express two genes from different β-glucan synthase families. Plant Physiol, in press.

  • Doehlert, D.C. 1987. Substrate inhibition of maize endosperm sucrose synthase by fructose and its interaction with glucose inhibition. Plant Sci. 52: 153–157.

    Google Scholar 

  • Doonan, J. and Clayton, L. 1986. Immunofluorescent studies on the plant cytoskeleton. In: T.L. Wang (Ed.) Immunology in Plant Science, Cambridge University Press, Cambridge, UK, pp. 111–136.

    Google Scholar 

  • Franz, G. 1969. Soluble nucleotides in growing cotton hair. Phytochemistry 8: 737–741.

    Google Scholar 

  • Fu, H. and Park, W.D. 1995. Sink-and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell 7: 1369–1385.

    Google Scholar 

  • Geigenberger, P. and Stitt, M. 1991. A ‘futile’ cycle of sucrose synthesis and degradation is involved in regulating partitioning between sucrose, starch and respiration in cotyledons of germinating Ricinus communis L. seedlings when phloem transport is inhibited.Planta 185: 81–90.

    Google Scholar 

  • Geigenberger, P. and Stitt, M. 1993. Sucrose synthesis catalyzes a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189: 329–339.

    Google Scholar 

  • Guerin, J. and Carbonero, P. 1997. The spatial distribution of sucrose synthase isozymes in barley. Plant Physiol. 114: 55–62.

    Google Scholar 

  • Haigler, C.H. 1985. The functions and biogenesis of native cellulose. In: T.P. Nevell and S.H. Zeronian (Eds.) Cellulose Chemistry and its Applications, Ellis Horwood, Chichester, UK, pp. 30–83.

    Google Scholar 

  • Haigler, C.H. and Blanton, R.L. 1996. New hope for old dreams: evidence that plant cellulose synthase genes have finally been identified. Proc. Natl. Acad. Sci. USA 93: 12082–12085.

    Google Scholar 

  • Haigler, C.H. and Brown, R.M. Jr. 1986. Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134: 111–120.

    Google Scholar 

  • Haigler, C.H., Rao, N.R., Roberts, E.M., Huang, J.Y., Upchurch, D.P. and Trolinder, N.L. 1991. Cultured cotton ovules as models for cotton fiber development under low temperatures. Plant Physiol. 95: 88–96.

    Google Scholar 

  • Haigler, C.H., Hequet, E.F., Krieg, D.R., Strauss, R.E., Wyatt, B.G., Cai, W., Jaradat, T, Srinivas, N.G., Wu, C., Jividen, G.J. and Holaday, A.S. 2000a. Transgenic cotton with improved fiber micronaire, strength, length, and increased fiber weight. In: C.P. Dugger and D.A. Richter (Eds.) Proceedings of the 2000 Beltwide Cotton Conference, 4–8 January 2000, San Antonio, TX. National Cotton Council, Memphis, p. 483.

    Google Scholar 

  • Haigler, C.H., Cai, W, Martin, L.K., Tummala, J, Anconetani, R, Gannaway, J.G., Jividen, G.J. and Holaday, A.S. 2000b. Mechanisms by which fiber quality and fiber and seed weight can be improved in transgenic cotton growing under cool night temperatures. In: C.P. Dugger and D.A. Richter (Eds.) Proceedings of the 2000 Beltwide Cotton Conference,4–8 January 2000, San Antonio, TX. National Cotton Council, Memphis, p. 483.

    Google Scholar 

  • Haigler, C.H., Holaday, A.S., Wu, C., Wyatt, B.G., Jividen, G.J., Gannaway, J.G., Cai, W.X., Hequet, E.F., Jaradat, T.T., Krieg, D.R., Martin, L. K., Strauss, R.E., Nagarur, S. and Tummala, J. 2000c. Transgenic cotton over-expressing sucrose phosphate synthase produces higher quality fibers with increased cellulose content and has enhanced seedcotton yield. Abstract 477. In: Proceedings of Plant Biology 2000, 15–19 July, San Diego, CA. American Society of Plant Physiologists, Rockville, MD [http://www.aspp.org/annual-meeting/pb-2000/2000.htm].

    Google Scholar 

  • Hayashi, T., Read, S.M., Bussell, J., Thelen, M., Lin, F.-C., Brown, R.M. Jr. and Delmer, D.P. 1987. UDP-glucose: (1→3)β-glucan synthases from mung bean and cotton. Plant Physiol. 83: 1054–1062.

    Google Scholar 

  • Hirai, N., Sonobe, S. and Hayashi, T. 1998. In situ synthesis of β-glucan microfibrils on tobacco plasma membrane sheets. Proc. Natl. Acad. Sci. USA 95: 15102–15106.

    Google Scholar 

  • Holland, N., Holland, D., Helentjaris, T., Dhugga, K.S., Xoconostle-Cazares, B. and Delmer, D.P. 2000. A comparative analysis of the plant cellulose synthase (Cesa) gene family. Plant Physiol. 123: 1313–1324.

    Google Scholar 

  • Hong, Z., Delauney, A.J. and Verma, D.P.S. 2001. A cell platespecific callose synthase and its interaction with phragmoplastin. Plant Cell, in press.

  • Huber, S.C. and Akazawa, T. 1986. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells. Plant Physiol. 81: 1008–1013.

    Google Scholar 

  • Huber, S.C. and Huber, J.L. 1996. Role and regulation of sucrosephosphate synthase in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 431–444.

    Google Scholar 

  • Huber, S.C., Huber, J.L. Gage, D.A., McMichael, R.W., Chourey, P.S, Hannah L.C. and Koch, K. 1996. Phosphorylation of serine-15 of maize leaf sucrose synthase. Plant Physiol. 112: 793–802.

    Google Scholar 

  • Jaquet, J.P., Buchala, A.J. and Meier, H. 1982. Changes in the nonstructural carbohydrate content of cotton (Gossypium spp.) fibres at different stages of development. Planta 156: 481–486.

    Google Scholar 

  • Kawagoe, Y. and Delmer, D.P. 1997. Pathways and genes involved in cellulose biosynthesis. In: J.K. Setlow (Ed) Genetic Engineering, vol. 19, Plenum Press, New York, pp. 63–87.

    Google Scholar 

  • Kimura, S., Laosinchai, W., Itoh, T., Cui, X., Linder, R. and Brown, R.M. Jr. 1999. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11: 2075–2085.

    Google Scholar 

  • Kinney, A.J. 1998. Manipulating flux through plant metabolic pathways. Curr. Opin. Plant Biol. 1: 173–177.

    Google Scholar 

  • Kloth, R.H. 1989. Changes in the level of tubulin subunits during development of cotton (Gossypium hirsutum) fiber. Physiol. Plant. 76: 37–41.

    Google Scholar 

  • Kobayashi, H. and Fukuda, H. 1994. Involvement of calmodulin and calmodulinbinding proteins in the differentiation of tracheary elements in Zinnia cells. Planta 194: 388–394.

    Google Scholar 

  • Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509–540.

    Google Scholar 

  • Koch, K.E., Nolte, K.D., Duke, E.R., McCarty, D.R. and Avigne, W.T. 1992. Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell 4: 59–69.

    Google Scholar 

  • Koch, K.E., Xu, J., Duke, E.R., McCarty, D.R., Yuan, C-X., Tan, B.-C. and Avigne, W.T. 1995. Sucrose provides a long distance signal for coarse control of genes affecting its metabolism. In: H.G. Pontis, G. Salerno and E. Echeverria (Eds.) Sucrose Metabolism, Biochemistry, Physiology, and Molecular Biology, American Society of Plant Physiologists, Rockville, MD, pp. 266–277.

    Google Scholar 

  • Koch, K.E., Wu, Y. and Xu, J. 1996. Sugar and metabolic regulation of genes for sucrose metabolism: potential influence of maize sucrose synthase and soluble invertase responses on carbon partitioning and sugar sensing. J. Exp. Bot. 47: 1179–1185.

    Google Scholar 

  • Kudlicka, K., Brown, R.M. Jr., Li, L., Lee, J.H., Shen, H. and Kuga, S. 1995. β-glucan synthesis in the cotton fiber. IV. In vitro assembly of the cellulose I allomorph. Plant Physiol. 107: 111–123.

    Google Scholar 

  • Kudlicka, K., Lee, J.H. and Brown, R.M. Jr. 1996. A comparative analysis of in vitro cellulose synthesis from cellfree extracts of mung bean (Vigna radiata, Fabaceae) and cotton (Gossypium hirsutum, Malvaceae). Am. J. Bot. 83: 274–284.

    Google Scholar 

  • Laporte, K., Rossignol, M. and Traas, J.A. 1993. Interaction of tubulin with the plasma membrane: tubulin is present in purified plasmalemma and behaves as an integral membrane protein. Planta 191: 413–416.

    Google Scholar 

  • Lindblom, S., Ek, P., Muszynska, G., Ek, B., Szczegielniak, J. and Engstrom, L. 1997. Phosphorylation of sucrose synthase from maize seedlings. Acta Biochim. Pol. 44: 809–817

    Google Scholar 

  • Loog, M., Toomik, R., Sak, K., Muszynska, G., Jarv, J. and Ek, P. 2000. Peptide phorphorylation by a calcium-dependent protein kinase from maize seedlings. Eur. J. Biochem. 267: 337–343.

    Google Scholar 

  • Maas, C., Schaal, S. and Werr, W. 1990. A feedback control element near the transcription start site of the maize Shrunken gene determines promoter activity. EMBO J. 9: 3447–3452.

    Google Scholar 

  • Maltby, D., Carpita, N.C., Montezinos, D., Kulow, C. and Delmer, D.P. 1979. β-1,3-glucan in developing cotton fibers. Plant Physiol. 63: 1158–1164.

    Google Scholar 

  • Martin, L.K. 1999. Cool-temperature-induced changes in metabolism related to cellulose synthesis in cotton fibers. Ph.D. dissertation, Texas Tech University, Lubbock, TX

    Google Scholar 

  • Meinert, M.C. and Delmer, D.P. 1977. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol. 59: 1088–1097.

    Google Scholar 

  • Morrow, D.L. and Lucas, W.J. 1986. (1,3)-β-glucan synthase from sugar beet. I. Isolation and solubilization. Plant Physiol. 81: 171–176

    Google Scholar 

  • Mutsaers, H.J.W. 1976. Growth and assimilate conversion of cotton bolls (Gossypium hirsutum L.) 1. Growth of fruits and substrate demand. Ann. Bot. 40: 301–315.

    Google Scholar 

  • Nakai, T., Tonouchi, N., Konishi, T., Kojima, Y., Tsuchida, T., Yoshinaga, F., Sakae F. and Hayashi, T. 1999. Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 96: 14–18.

    Google Scholar 

  • Nguyen-Quoc, B., Krivitzky, M., Huber, S.C. and Lecharny, A. 1990. Sucrose synthase in developing maize leaves: regulation of activity by protein level during the import to export transition. Plant Physiol. 94: 516–523.

    Google Scholar 

  • Nicolas, T.N. and Bassot, J.M. 1993. Freeze substitution after fast-freeze fixation in preparation for immunocytochemistry. Microscopy Res. Tech. 24: 474–487.

    Google Scholar 

  • Nolte K.D. and Koch, K.E. 1993. Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading. Plant Physiol. 101: 899–905.

    Google Scholar 

  • Nolte, K.D., Hendrix, D.L., Radin, J.W. and Koch, K.E. 1995. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiol. 109: 1285–1293.

    Google Scholar 

  • Pear, J., Kawagoe, Y., Schreckengost, W., Delmer, D.P. and Stalker, D. 1996. Higher plants contain homologs of the CelA genes that encode the catalytic subunit of the bacterial cellulose synthases. Proc. Natl. Acad. Sci. USA 93: 12637–12642.

    Google Scholar 

  • Peng, L., Xiang, F., Roberts, E., Kawagoe, Y., Greve, L.C., Kreuz, K., Delmer, D.P. 2001. The experimental herbicide cgA 325'615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline β-1,4-glucan associated with CesA protein. Plant Physiol, in press.

  • Pillonel, C., Buchala, A.J. and Meier, H. 1980. Glucan synthesis by intact cotton fibres fed with different precursors at the stages of primary and secondary wall formation. Planta 149: 306–312.

    Google Scholar 

  • Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P. and Levine, A. 1999. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119: 849–858.

    Google Scholar 

  • Preston, R.D. 1974. The Physical Biology of Plant Cell Walls. Chapman and Hall, London.

    Google Scholar 

  • Quick, W.P. and Schaffer, A.A. 1996. Sucrose metabolism in sources and sinks. In: E. Zamski and A.A. Schaffer (Eds.) Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships, (AUTHOR: PLEASE PROVIDE PUBLISHER DATA), pp. 115–156.

  • Reymond, O.L. and Pickett-Heaps, J.D. 1983.A routine flat embedding method for electron microscopy of microorganisms allowing selection and precisely orientated sectioning of single cells by light microscopy. J. Microsc. 130: 79–84.

    Google Scholar 

  • Richmond, T.A. and Somerville, C.R. 2001. Integrative approaches to determining Csl function. Plant Mol. Biol., this issue.

  • Roberts, A.W. and Haigler, C.H. 1990. Tracheary-element differentiation in suspension cultures of Zinnia requires uptake of extracellular Ca2 +. Experiments with calcium-channel blockers and calmodulin inhibitors. Planta 180: 502–509.

    Google Scholar 

  • Roberts, E.M., Nunna, R.R., Huang, J.Y., Trolinder, N.L. and Haigler, C.H. 1992. Effects of cycling temperatures on fiber metabolism in cultured cotton ovules. Plant Physiol. 100: 979–986.

    Google Scholar 

  • Rollit, J. and Maclachlan, G.A. 1974. Synthesis of wall glucan from sucrose by enzyme preparations from Pisum sativum. Phytochemistry 13: 367–374.

    Google Scholar 

  • Ross, P., Mayer, R. and Benziman, M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55: 35–58.

    Google Scholar 

  • Ruan, Y.-L., Chourey, P.S., Delmer, D.P. and Perez-Grau, L. 1997. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiol. 115:375–385.

    Google Scholar 

  • Ruan, Y.-L. and Chourey, P.S. 1998. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol. 118: 399–406.

    Google Scholar 

  • Ryser, U. 1985. Cell wall biosynthesis in differentiating cotton fibres. Eur. J. Cell Biol. 39: 236–256.

    Google Scholar 

  • Ryser, U. 1992. Ultrastructure of the epidermis of developing cotton (Gossypium) seeds: suberin, pits, plasmodesmata, and their implications for assimilate transport into cotton fibers. Am. J. Bot. 79: 14–22.

    Google Scholar 

  • Ryser, U. 1999. Cotton fiber initiation and histodifferentiation. In: A.S. Basra (Ed.) Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, Haworth Press, New York, pp. 1–46.

    Google Scholar 

  • Salnikov, V.V., Grimson, M.J., Delmer, D.P. and Haigler, C.H. 2001. Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochemistry, in press.

  • Seagull, R.W. 1993. Cytoskeletal involvement in cotton fiber growth and development. Micron 24: 643–660.

    Google Scholar 

  • Sebkova, V., Unger, C., Hardegger, M. and Sturm, A. 1995. Biochemical, physiological, and molecular characterization of sucrose synthase from Daucus carota. Plant Physiol. 108: 75–83.

    Google Scholar 

  • Shaw, J.R., Ferl, R.J., Baier, J., St. Clair, D., Carson, C., McCarty, D.R. and Hannah, L.C. 1994. Structural features of the maize sus1 gene and protein. Plant Physiol. 106: 1659–1665.

    Google Scholar 

  • Shedletzky, E., Shmuel, M., Trainin, T., Kalman, S. and Delmer, D.P. 1992. Cell wall structure in cells adapted to growth on the cellulose-synthesis inhibitor 2,6-dichloro-benzonitrile (DCB): a comparison between two dicotylenonous plants and a graminaceous monocot. Plant Physiol. 100: 120–130.

    Google Scholar 

  • Sheen, J., Shou, L. and Jang, J.C. 1999. Sugars as signaling molecules. Curr. Opin. Plant Biol. 2: 410–418.

    Google Scholar 

  • Smith, A.M. 1999. Regulation of starch synthesis in storage organs. In: N.J. Kruger et al. (Eds.) Regulation of Primary Metabolic Pathways in Plants, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 173–193.

    Google Scholar 

  • Smook, G.A. 1992. Handbook for Pulp and Paper Technologists. Angus Wilde Publications, Vancouver.

    Google Scholar 

  • Sturm, A., Sebkova, V., Lorenz, K., Hardegger, M., Lienhard, S. and Unger, C. 1995. Development-and organ-specific expression of the genes for sucrose synthase and three isozymes of acid β-fructofuranoside in carrot. Planta 195: 601–610.

    Google Scholar 

  • Sturm, A. and Tang, G.-Q. 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth, and carbon partitioning. Trends Plant Sci. 4: 401–407.

    Google Scholar 

  • Sturm, A., Lienhard, S., Schatt, S. and Hardegger, M. 1999. Tissuespecific expression of two genes for sucrose synthase in carrot (Daucus carota L.). Plant Mol. Biol. 39: 349–360.

    Google Scholar 

  • Sun, J., Loboda, T., Sung, S.-J. and Black, C.C. Jr. 1992. Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol. 98: 1163–1169.

    Google Scholar 

  • Sung, S.-J., Xu, D.-P. and Black, C.C. 1989. Identification of actively-filling sucrose sinks. Plant Physiol. 89: 1117–1121.

    Google Scholar 

  • Tang, G.Q. and Sturm, A. 1999. Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol. Biol. 41: 465–479.

    Google Scholar 

  • Taylor, N.G., Scheible, W.R., Cutler, S., Somerville, C.R., and Turner, S.R. 1999. The irregular xylem locus of Arabidopsis en-codes a cellulose synthase required for secondary wall synthesis. Plant Cell 11: 769–780.

    Google Scholar 

  • Theander, O. and Westerlund, E. 1993. Quantitative analysis of cell wall components. In: H.G. Jung, D.R. Buxton, R.D. Hatfield and J. Ralph (Eds.) Forage Cell Wall Structure and Digestibility, American Society of Agronomy/CSSA/SSSA, Madison, WI, pp. 83–104.

    Google Scholar 

  • Todorov, I.T., Aattaran, A. and Kearsey, S.E. 1995. BM28, a human member of the MCM2–3–5 family, is displaced from chromatin during DNA replication. J. Cell Biol. 129: 1433–1445.

    Google Scholar 

  • Tummala, J. 1996. Response of sucrose phosphate synthase activity to cool temperatures in cotton. M.S. thesis, Texas Tech University, Lubbock, TX.

    Google Scholar 

  • Turner, S. and Somerville, C.R. 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9: 689–701.

    Google Scholar 

  • Turnquist, R.L. and Hansen, R.G. 1973. Uridine diphosphphoryl glucose pyrophosphorylase. In: P.D. Boyer (Ed.) The Enzymes, vol. 8, part A, 3rd ed., Academic Press, New York, pp. 51–71.

    Google Scholar 

  • Updegraff, D.M. 1969. Semi-micro determination of cellulose in biological materials. Anal. Biochem. 32: 420–424.

    Google Scholar 

  • Vergara, C.E. and Carpita, N.C. 2001. Mixed-linkage β-glucan synthase and the CesA gene family in cereals. Plant Mol. Biol., this issue.

  • Volman, G., Ohana, P. and Benziman, M. 1995. Biochemistry and molecular biology of cellulose synthesis. Carbohydrates Europe 12: 20–27.

    Google Scholar 

  • Wäfler, U. and Meier, H. 1994. Enzyme activities in developing cotton fibers. Plant Physiol. Biochem. 32: 697–702.

    Google Scholar 

  • Wang, F., Sanz, A., Brenner, M.L. and Smith, A. 1993. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol. 101: 321–327.

    Google Scholar 

  • Wendel, J.F., Small, R.L., Cronn, R.C. and Brubaker, C.L. 1999. Genes, jeans, and genomes: reconstructing the history of cotton. In: L.W.D. van Raamsdonk and J.C.M. den Nijs (Eds.) Plant Evolution in Man-Made Habitats, Proceedings of the 7th Symposium IOPB (Amsterdam, 1998), Hugo de Vries Laboratory, Amsterdam, pp. 133–159.

    Google Scholar 

  • Wendler, R., Veith, R., Dancer, J., Stitt, M. and Komor, E. 1990. Sucrose storage in cell suspension cultures of Saccharum sp. (sugarcane) is regulated by a cycle of synthesis and degradation. Planta 183: 31–39.

    Google Scholar 

  • Winter, H. and Huber, S.C. 2000. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Crit. Rev. Plant Sci. 19: 31–67.

    Google Scholar 

  • Winter, H., Huber, J.L. and Huber, S.C. 1997. Membrane association of sucrose synthase: changes during graviresponse and possible control by protein phosphorylation. FEBS Lett. 420: 151–155.

    Google Scholar 

  • Winter, H., Huber, J.L. and Huber, S.C. 1998. Identification of sucrose synthase as an actin-binding protein. FEBS Lett. 430: 205–208.

    Google Scholar 

  • Xu, D.-P., Sung, S.-J., Loboda, T., Kormanik, P.P. and Black, C.C. 1989. Characterization of sucrolysis via the uridine diphosphate and pyrophosphate-dependent sucrose synthase pathway. Plant Physiol. 90: 635–642.

    Google Scholar 

  • Zhang, X.-Q. and Chollet, R. 1997. Seryl-phosphorylation of soybean nodule sucrose synthase (nodulin-100) by a Ca2 +-dependent protein kinase. FEBS Lett. 410: 126–130.

    Google Scholar 

  • Zhang, X.Q., Lund, A.A., Sarath, G., Cerny, R.L., Roberts, D.M. and Chollet, R. 1999. Soybean nodule sucrose synthase (nodulin-100): further analysis of its phosphorylation using recombinant and authentic root-nodule enzymes. Arch. Biochem. Biophys. 371: 70–82.

    Google Scholar 

  • Zrenner, R., Willmitzer, L. and Sonnewald, U. 1993. Analysis of the expression of potato uridinediphosphate-glucose phyrophosphorylase and its inhibition by antisense RNA. Planta 190: 247–252.

    Google Scholar 

  • Zrenner, R., Salanoubat, M., Willmitzer, L. and Sonnewald, U. 1995. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.) Plant J. 7: 97–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haigler, C.H., Ivanova-Datcheva, M., Hogan, P.S. et al. Carbon partitioning to cellulose synthesis. Plant Mol Biol 47, 29–51 (2001). https://doi.org/10.1023/A:1010615027986

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010615027986

Navigation