Skip to main content
Log in

Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The ABO blood-group polymorphism is still the most clinically important system in blood transfusion practice. The groups were discovered in 1900 and the genes at the ABO locus were cloned nearly a century later in 1990. To enable this goal to be reached intensive studies were carried out in the intervening years on the serology, genetics, inheritance and biochemistry of the antigens belonging to this system. This article describes biochemical genetic investigations on ABO and the related Lewis antigens starting from the time in the 1940s when serological and classical genetical studies had established the immunological basis and mode of inheritance of the antigens but practically nothing was known about their chemical structure. Essential steps were the definition of H as the product of a genetic system Hh independent of ABO, and the establishment of the precursor–product relationship of H to A and B antigens. Indirect methods gave first indications that the specificity of antigens resided in carbohydrate and revealed the immunodominant sugars in the antigenic structures. Subsequently chemical fragmentation procedures enabled the complete determinant structures to be established. Degradation experiments with glycosidases revealed how loss of one specificity by the removal of a single sugar unit exposed a new specificity and suggested that biosynthesis proceeded by a reversal of this process whereby the oligosaccharide structures were built up by the sequential addition of sugar units. Hence, the primary blood-group gene products were predicted to be glycosyltransferase enzymes that added the last sugar to complete the determinant structures. Identification of these enzymes gave new genetic markers and eventually purification of the blood-group A-gene encoded N-acetylgalactosaminyltransferase gave a probe for cloning the ABO locus. Blood-group ABO genotyping by DNA methods has now become a practical possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landsteiner K, Zur kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des blut serums und der lymphe, Zbl Bakt 27, 357–62 (1900).

    Google Scholar 

  2. Landsteiner K, Uber agglutinationserscheinungen normalen menschlichen blutes, Wien Klin Wschr 14, 1132–4 (1901).

    Google Scholar 

  3. Decastello A, Sturli A, Uber die isoagglutinine im Serumgesunder und kranker, Menschen Med Wschr 49, 1090–5 (1902).

    Google Scholar 

  4. Epstein AA, Ottenberg R, Simple method of performing serum reactions, Proc New York Path Soc 8, 117–23 (1908).

    Google Scholar 

  5. Bernstein F, Ergebnisse einer biostatischen zusamenfassenden Betrachtung, Klin Wschr 3, 1495–7 (1924).

    Google Scholar 

  6. Thomsen O, Friedenreich V, Worsaae E, Uber die moglichkeit der existenz sweier neuer blutgruppen: auch ein Beitrag zur beleuchtung sogennanter untergruppen, Acta Path Microbiol Scand 7, 157–90 (1930).

    Google Scholar 

  7. Yamamoto F, Clausen H, White I, Marken J, Hakomori S, Molecular genetic basis of the histo-blood group ABO system, Nature 345, 229–33 (1900).

    Google Scholar 

  8. Ferguson-Smith MA, Aitkin DA, Turleau C, Grouchy J, Localisation of the human ABO:Np-1:AK-1 linkage group by regional assignment of AK-1 to 9q34, Hum Genet 34, 35–43 (1976).

    Google Scholar 

  9. Yamakami K, The individuality of semen, with reference to its property of inhibiting specifically isoaagglutination, J Immunol 12, 185–9 (1926).

    Google Scholar 

  10. Lehrs H, Uber gruppenspezifischen eigenschaften des menslichen Speichels, Z Immunforsch 66, 175–92 (1930).

    Google Scholar 

  11. Putkonen T, Uber gruppenspezifischen eigenschaften verschiedener korper flussigkeiten, Acta Soc Med Fenn “Duodecim” A 14, (part 2) (1930).

  12. Schiff F, Sasaki H, Der auschiedunstypus, ein auf serologischem wege nachweisbares mendelnes merkal, Klin Woch 11, 1426–9 (1932).

    Google Scholar 

  13. Schiff F, Adelsberger L, Z lmmunforsch 40, 335 (1924) (cited in Wiener AS, Blood Groups and Transfusion, Thomas, Baltimore, 1943).

    Google Scholar 

  14. Landsteiner K, van der Scheer, J Exp Med 42, 123 (1925) (cited in Wiener AS, Blood Groups and Transfusion, Thomas, Baltimore, 1943).

    Google Scholar 

  15. Schiff F, Zbt Bakt 1 Abt Ref. 98, 94 (1930) (cited in Wiener AS, Blood Groups and Transfusion, Thomas, Baltimore, 1943).

    Google Scholar 

  16. Landsteiner K, Harte RA, J Exp Med 71, 551 (1940) (cited in Wiener AS, Blood Groups and Transfusion, Thomas, Baltimore, 1943).

    Google Scholar 

  17. Morgan WTJ, King HK, Studies in Immunochemistry 7. The isolation from hog gastric mucin of the polysaccharide-amino acid complex possessing blood group A specificity, Biochem J 37, 640–51 (1943).

    Google Scholar 

  18. Yosida G, Uber die gruppenspezifischen unterschiede der transudate, Z Ges Exptl Med 63, 331–9 (1928).

    Google Scholar 

  19. Morgan WTJ, Some observations on the carbohydrate-containing components of ovarian cyst mucin, Ann New York Acad Sci 106, 177–190 (1963).

    Google Scholar 

  20. Morgan WTJ, van Heyningen R, The occurrence of A B and O blood group substances in pseudomucinous ovarian cyst fluids, Brit J Exp Path 25, 5–15 (1944).

    Google Scholar 

  21. Partridge SM, Morgan WTJ, Artificial antigens with agar, gum acacia and cherry gums pecificity, Brit J Exp Pathol 23, 84–94 (1942).

    Google Scholar 

  22. Morgan WTJ, An artificial antigen with blood group A specificity, Brit J Exp Pathol 24, 41–9 (1943).

    Google Scholar 

  23. Morgan WTJ, Watkins WM, A blood group A antigen prepared from an A-hapten of human origin, Brit J Exp Pathol 25, 221–8 (1944).

    Google Scholar 

  24. Morgan WTJ, Watkins WM, The examination of rabbit anti-A immune sera produced by means of an artificial A antigen, Brit J Exp Pathol 26, 247–54 (1945).

    Google Scholar 

  25. Rainsford SG, Morgan WTJ, Determination of blood groups: Use of rabbit immune serum, Lancet 154–6 (1946).

  26. Witebsky E, Klendshoj NC, The isolation of an O specific substance from gastric juice of secretors and carbohydrate-like substances from gastric juice of non-secretors, J Exp Med 73, 655–67 (1941).

    Google Scholar 

  27. Morgan WTJ, Watkins WM, The detection of a product of the blood group O gene and the relationship of the so-called O-substance to the agglutinogens A and B, Brit J Exp Pathol 29, 159–73 (1948).

    Google Scholar 

  28. Hirszfeld L, Amzel R, Sur les pleiades “isozeriques” du sang: Contribution a l'études des sous-groupes sanguins, Ann Inst Pasteur 65, 251–86 (1940).

    Google Scholar 

  29. Bhende YM, Deshpande CK, Bhatia HM, Sanger R, Race RR, Morgan WTJ, Watkins WM, A “new” blood group character related to the ABO system, Lancet i, 903–4 (1952).

    Google Scholar 

  30. Watkins WM, Morgan WTJ, Some observations on the O and H characters of human blood and secretions, Vox Sang 5 (old series), 1–14 (1955).

    Google Scholar 

  31. Mourant AE, A new human blood group antigen of frequent occurrence, Nature 158, 237 (1946).

    Google Scholar 

  32. Andresen PH, The blood group system L. A new blood group L2. A case of epistasy within the blood groups, Acta Path Microbiol Scand 25, 728–31 (1948).

    Google Scholar 

  33. Grubb R, Correlation between Lewis blood group and secretor character in man, Nature 162, 933 (1948).

    Google Scholar 

  34. Brendemoen OJ, Studies of agglutination and inhibition in two Lewis antibodies, J Lab Clin Med 36, 335–41 (1949).

    Google Scholar 

  35. Grubb R, Morgan WTJ, The “Lewis” blood group characters of erythrocytes and body fluids, Brit J Exp Pathol 30, 198–208 (1948).

    Google Scholar 

  36. Ceppellini R, On the genetics of secretor and Lewis characters: A family study. In Proc Vth Congr Int Soc Blood Transf, Paris, 1954, p. 207 (1955).

  37. Morgan WTJ, Blood group specific mucopolysaccharides. In Methods in Carbohydrate chemistry, 5, 95–8, (Academic Press, New York, 1965).

    Google Scholar 

  38. Aminoff D, Morgan WTJ, Watkins WM, Studies in Immunochemistry 8. The isolation and properties of the human blood group A substance, Biochem J 46, 426–38. Addendum Kekwick RA, Physicochemical examination of blood group A substance, 46, 438–9 (1950).

    Google Scholar 

  39. Gibbons RA, Morgan WTJ, Studies in Immunochemistry 14. The isolation and properties of substances of human origin possessing blood group B activity, Biochem J 57, 283–95 (1954).

    Google Scholar 

  40. Annison EF, Morgan WTJ, Studies in Immunochemistry 11. The isolation and properties of human blood group H substance, Biochem J 52, 247–58. Addendum Kekwick RA, Physicochemical examination of blood group Lewis (Lea) substance, Biochem J 52, 259–60 (1952).

    Google Scholar 

  41. Annison EF, Morgan WTJ, Studies in Immunochemistry 10. The isolation and properties of Lewis (Lea) human blood group substance, Biochem J 50, 460–70. Addendum Kekwick RA, Physicochemical examination of blood group-substance, Biochem J 50, 471–2 (1952).

    Google Scholar 

  42. Morgan WTJ, The Croonian Lecture: A contribution to human biochemical genetics: the chemical basis of blood group specificity, Proc Roy Soc Series B 151, 308–47 (1960).

    Google Scholar 

  43. Morgan WTJ, Watkins WM, The product of the human blood group A and B genes in individuals belonging to group AB, Nature 177, 521–2 (1956).

    Google Scholar 

  44. Watkins WM, Some genetical aspects of the biosynthesis of human blood group substances, In Ciba Foundation Symposium on Biochemistry of Human Genetics, edited by Wolstenholme GWG and O'Connor CM, (Little Brown and Co, Boston), pp 217–41.

  45. Bray HG, Stacey M, Biochem J 40, 124 (1946).

    Google Scholar 

  46. Aminoff D, Morgan WTJ, Hexosamine components of the human blood group substances, Nature 162, 579–580 (1948).

    Google Scholar 

  47. Watkins WM, Morgan WTJ, Possible genetical pathways for the biosynthesis of blood-group mucopolysaccharides, Vox Sang 4, 97–119 (1959).

    Google Scholar 

  48. Vicari G, Kabat EA, Immunochemical studies on blood groups XLII Isolation and characterisation from an ovarian cyst of a blood group substance lacking A, B H, Lea and Leb specificity, J Immunol 102, 821–5 (1969).

    Google Scholar 

  49. Landsteiner K, van der Scheer J, On the specificity of serological reactions with simple chemical compounds (inhibition reactions), J Exp Med 54, 295–305 (1931).

    Google Scholar 

  50. Watkins WM, Morgan WTJ, Neutralisation of the anti-H agglutinin in eel serum by simple sugars, Nature 169, 825–6 (1952).

    Google Scholar 

  51. Renkonen KO, Studies on haemagglutinins present in seeds of some representatives of the family Leguminosae, Ann Med Exp Bio Fenn 26, 66–72 (1948).

    Google Scholar 

  52. Boyd WC, Reguera RM, Haemagglutinating substances for human cells in various plants, J Immunol 62, 333–9 (1949).

    Google Scholar 

  53. Morgan WTJ, Watkins WM, The inhibition of the haemagglutinins in plant seeds by human blood group substances and simple sugars, Brit J Exp Pathol 34, 94–103 (1953).

    Google Scholar 

  54. Hindsgual O, Khare DP, Bach M, Lemieux RU, Molecular recognition III. The binding of the H-type 2 human blood group determinant by the lectin I of Ulex europaeus, Can J Chem 63, 2653–8 (1985).

    Google Scholar 

  55. Kabat EA, Leskowitz, Immunochemical studies on blood groups XVII. Structural units involved in blood group A specificity, J Am Chem Soc 77, 5154–69 (1955).

    Google Scholar 

  56. Watkins WM, Morgan WTJ, Inhibition by simple sugars of enzymes which decompose blood-group substances, Nature 175, 676–7 (1955).

    Google Scholar 

  57. Kabat EA, Blood Group Substances: Their chemistry and Immunochemistry, (Academic Press, New York, 1956).

    Google Scholar 

  58. Watkins WM, Blood-group specific substances. In Glycoproteins: their composition, structure and function, edited by Gottskchalk A (Elsevier, Amsterdam, 1966), pp. 462–515.

    Google Scholar 

  59. Kuhn R, Les oligosaccharides du lait, Bull Soc Chim Biol 40, 297–314 (1958).

    Google Scholar 

  60. Watkins WM, Morgan WTJ, Specific inhibition studies relating to the Lewis blood group system, Nature 180, 1038–40 (1957).

    Google Scholar 

  61. Watkins WM, Changes in blood group specificity induced by enzymes. In Biochimie des Glucides, Structure-spécificité, Editions du Centre National de la Recherche Scientifique, Paris, pp. 271–7 (1961).

    Google Scholar 

  62. Watkins WM, Changes in the specificity of blood group mucopolysaccharides induced by enzymes from Trichomonas foetus, Immunology 5, 245–66 (1962).

    Google Scholar 

  63. Iseki S, Masaki S, Transformation of blood group substances by bacterial enzyme, Proc Japan Acad Sci 29, 460–5 (1953).

    Google Scholar 

  64. Allen PZ, Kabat EA, Immunochemical studies on blood groups XXIII. Studies on the cross reactivity of untreated and partially hydrolysed blood group A, B and O(H) substances with Type XIV anti-pneumococcal horse serum, J Immunol 82, 358–72 (1959).

    Google Scholar 

  65. Watkins WM, Morgan WTJ, Role of O-?-D-galactopyranosyl(1-4)-N-acetyl-glucosamine as inhibitor of the precipitation of blood group substances by an anti-Type 14 pneumococcal polysaccharide, Nature 178, 1289–90 (1956).

    Google Scholar 

  66. Lindberg B, Lonngren J, Powell DA, Structural studies on the specific Type-14 pneumococcus polysaccharide, Carbohydr Res 58, 177–86 (1977).

    Google Scholar 

  67. Watkins WM, Blood-group substances, Science 152,172–81(1966).

    Google Scholar 

  68. Watkins WM, The multiple specificities of blood group mucopolysaccharides. Proc 7th Int Congr Blood Transfus Rome 1958, edited by Hollander L, (Karger, Basel, 1959), pp. 692–6.

    Google Scholar 

  69. Ceppellini R, Physiological genetics of human blood factors, In Ciba Foundation Symposium on Biochemistry of Human Genetics, edited by Wolstonholme GEW, O'Connor CM, (Little, Brown and Co. Boston, 1959) pp. 242–63.

    Google Scholar 

  70. Haldane JBS, The biochemistry of the individual. In Perspectives in Biochemistry, edited by Needham J, Green DE, (Cambridge University Press, Cambridge, 1937) pp. 1–10.

    Google Scholar 

  71. Watson JD, Crick FHC, Molecular structure of the nucleic acids: a structure of deoxynucleic acid, Nature 171, 964–7 (1953).

    Google Scholar 

  72. Leloir LF, The fifth Feodor Lynen lecture “I hate to bore people with my recollections” In Biology and Chemistry of eucaryotic cell surfaces, Miami Winter Symposium, edited by Lee EYC, Smith EE, Vol. 7, (Academic Press, New York, 1974) pp. 1–20.

    Google Scholar 

  73. Watkins WM, The possible enzymic basis of the biosynthesis of blood group substances In Proc 3rd Int Congr Hum Genet, Chicago 1966, edited by Crow JF, Neel JV, (John Hopkins Press, Baltimore, 1967) pp. 171–87.

    Google Scholar 

  74. Côté RH, Morgan WTJ, Some nitrogen-containing disaccharides isolated from human blood group A substance, Nature 178, 1171–2 (1956).

    Google Scholar 

  75. Whistler RL, Durso DF, J Amer Chem Soc 72, 677 (1950).

    Google Scholar 

  76. Partridge SM, Biochem Soc Symposia 3, 52 (1949).

    Google Scholar 

  77. Cheese IAFL, Morgan WTJ, Two serologically active trisaccharides isolated from human blood-group A substance, Nature 191, 149–50 (1961).

    Google Scholar 

  78. Schiffman G, Kabat EA, Leskowitz S, Immunochemical studies on blood groups XXVI. The isolation of oligosaccharides from human ovarian cyst blood group A substance including two disaccharides and a trisaccharide involved in the specificity of the blood group A antigenic determinant, J Amer Chem Soc 84, 73–4 (1962).

    Google Scholar 

  79. Painter TJ, Water-soluble polystyrene sulphonic acid as a catalyst in the controlled fragmentation of very labile polysaccharides, Chem Ind (London) 1214–5 (1960).

  80. Painter TJ, Morgan WTJ, Water-soluble polystryrene sulphonic acid as a selective catalyst in the acid hydrolysis of basic polysaccharides, Chem Ind (London) 437 (1961).

  81. Painter TJ, Watkins WM, Morgan WTJ, Isolation of a B specific disaccharide from human blood group B substance, Nature 193, 1042–4 (1962).

    Google Scholar 

  82. Painter TJ, Watkins WM, Morgan WTJ, Isolation of two serologically active trisaccharides from human blood group B-substance, Nature 199, 282–3 (1963).

    Google Scholar 

  83. Rege VP, Painter TJ, Watkins WM, Morgan WTJ, Three new trisaccharides obtained from human blood group A, B, H and Lea substances; possible sequences in the carbohydrate chains, Nature 200, 532–4 (1963).

    Google Scholar 

  84. Rege VP, Painter TJ, Watkins WM, Morgan WTJ, Isolation of serologically active fucose-containing oligosaccharides from H substance, Nature 203, 360–3 (1964).

    Google Scholar 

  85. Rege VP, Painter TJ, Watkins WM, Morgan WTJ, Isolation of serologically active fucose-containing trisaccharide from human blood-group Lea substance, Nature 204, 740–2 (1964).

    Google Scholar 

  86. Painter TJ, Watkins WM, Morgan WTJ, Serologically active fucose-containing oligosaccharides from human blood group A and B substances, Nature 206, 594–7 (1965).

    Google Scholar 

  87. Marr AMS, Donald ASR, Watkins WM, Morgan WTJ, Molecular and genetic aspects of human blood group Leb specificity, Nature 215 1345–9 (1967).

    Google Scholar 

  88. Watkins WM, Biosynthesis 5. Molecular basis of antigenic specificity in the ABO, H and Lewis systems. In Glycoproteins, edited by Montreuil J, Vliegenthart JFG, Schachter S, (Elsevier, Amsterdam, 1995) pp. 313–90.

    Google Scholar 

  89. Donald ASR, A-active trisaccharides isolated from A1 and A2 blood group specific glycoproteins, Eur J Biochem 120, 243–9 (1981).

    Google Scholar 

  90. Lloyd KO, Kabat EA, Layug EJ, Gruezo F, Immunochemical studies on blood groups XXXIV. Structures of some oligosacharides produced by alkaline degradation of blood group A, B, and H substances, Biochemistry 5, 1489–501 (1966).

    Google Scholar 

  91. Lloyd KO, Kabat EA, Rosenfield RE, Immunochemical studies on blood groups XXXV. The activity of fucose-containing oligosaccharides isolated from blood-group A, B and H substances by alkaline degradation, Biochemistry 5, 1502–7 (1966).

    Google Scholar 

  92. Lloyd KO, Kabat EA, Licerio E, Immunochemical studies on blood groups XXXVIII. Structures of oligosaccharides produced by alkaline degradation of blood group Lewis substance. Proposed structure of the carbohydrate chains of human bloodgroup A, B, H, Lea and Leb substances, Biochemistry 7, 2976–99 (1968).

    Google Scholar 

  93. Fukushima K, Hirota M, Terasaki PI, Wakisaka A, Togashi H, Chia D, Suyama N, Fukushi Y, Nudelman ED, Hakomori S, Characterisation of sialylosylated Lewis x as a new tumour associated antigen, Cancer Res 44, 5279–85 (1984).

    Google Scholar 

  94. Gooi HC, Feizi T, Kapadia A, Knowles BB, Solter D, Evans MJ, Stage-specific embryonic antigen involves ?1,3-fucosyltated Type 2 blood group chain, Nature 292, 156–8 (1981).

    Google Scholar 

  95. Waltz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B, Recognition by Elam-1 of the sialyl-Lex determinant on myeloid and tumour cells, Science 250, 1132–5 (1990).

    Google Scholar 

  96. Marr AMS, Donald ASR, Morgan WTJ, Two new oligosaccharides obtained from an Lea active glycoprotein, Biochem J 110, 789–91 (1968).

    Google Scholar 

  97. Arcilla MB, Sturgeon P, Lex, the spurned antigen of the Lewis blood group system, Vox Sang 26, 425–38 (1974).

    Google Scholar 

  98. Feizi T, Kabat EA, Immunochemical studies on blood groups LIV. Classification of anti-I and anti-i sera into groups based on reactivity patterns with various antigens related to the blood group A, B, H, Lea, Leb and precursor substances, J Exp Med 135, 1247–58 (1972).

    Google Scholar 

  99. Kabat EA, Liao J, Lemieux RU, Immunochemical studies on blood groups LXVIII. The combining site of anti-I Ma (Group 1), Immunochemistry 15, 727–31 (1978).

    Google Scholar 

  100. Kabat EA, Immunochemical studies on the water-soluble human A, B, H, Lea and Leb substances. In Blood and Tissue Antigens, edited by Aminoff D, (Academic Press, New York, 1970) pp. 187–98.

    Google Scholar 

  101. Rovis L, Anderson B, Kabat EA, Gruezo F, Liao J, Heterogeneity of carbohydrate fragments isolated from human blood group H and Lea active glycoproteins by base-borohydride degradation, Biochemistry 12, 1955–61 (1973).

    Google Scholar 

  102. Pusztai A, Morgan WTJ, Studies in Immunochemistry 22. The amino acid composition of the human blood-group A, B, H and Lea specific substances, Biochem J 88, 546–56 (1963).

    Google Scholar 

  103. Donald ASR, The products of pronase digestion of purified blood group specific glycoproteins, Biochim Biophys Acta 317, 420–36 (1973).

    Google Scholar 

  104. Donald ASR, Creeth JM, Morgan WTJ, Watkins WM, The peptide moiety of human blood group active glycoproteins associated with the ABO and Lewis groups, Biochem J 115, 125–7 (1969).

    Google Scholar 

  105. Donald ASR, Partial deglycosylation of blood-group-specific glycoproteins, Biochem J 185, 327–37 (1980).

    Google Scholar 

  106. Kabat EA, Bassat EW, Pryzwansky K, Lloyd KO, Kaplan ME, Layug EJ, Immunochemical studies on blood groups XXXIII. The effects of alkaline boro-hydride and of alkali on blood group A, B and H substances, Biochemistry 4, 1632–8 (1965).

    Google Scholar 

  107. Hanisch F, Muller S, MUC1: the polymorphic appearance of human mucin, Glycobiology 10, 439–49 (2000).

    Google Scholar 

  108. Yamakawa T, Iida T, Immunological study of the red blood cells 1. Globoside as an agglutinogen of the ABO system on erythrocytes, Jap J Exp Med 23, 327–31 (1953).

    Google Scholar 

  109. Koscielak J, Chemistry and biosynthesis of erythrocyte membrane glycolipids with A, B, H and I blood group activities. In Human Blood Groups, edited by Mohn JF, Plunkett RW, Cunningham RK, Lambert RM, (Karger, Basel, 1977), pp. 143–169.

    Google Scholar 

  110. Hakomori S, Watanabe K, Laine RA, Glycosphingolipids with blood group A, H and I activity: their status in group A1 and A2 erythrocytes and their changes associated with ontogeny and oncogeny. In Human Blood Groups, edited by Mohn JF, Plunkett RW, Cunningham RK, Lambert RM, (Karger, Basel, 1977), pp. 150–163.

    Google Scholar 

  111. Watkins WM, Koscielak J, Morgan WTJ, The relationship between the specificity of the blood group A and B substances isolated from erythrocytes and from secretions, Proc 9th Int Soc Blood Transfus, Mexico, 1962, pp. 213–9 (1964).

  112. Clausen H, Hakomori S, ABH and related histo-blood group antigens: immunochemical differences in carrier isotypes and their distribution, Vox Sang 56, 1–20 (1989).

    Google Scholar 

  113. Koscielak J, Miller-Podraza H, Krauze R, Piasek A, Isolation and characterisation of poly(glycosyl)ceramides (megaloglycolipids) with A, H and I blood group activities, Eur J Biochem 71, 9–18 (1976).

    Google Scholar 

  114. Finne J, Krusius T, Rauvala H, Kekomaki R, Myllyla G, Alkali-stable blood group A and B active poly(glycosyl)peptides from the human erythrocyte membrane, FEBS Lett 89, 111–5 (1978).

    Google Scholar 

  115. Karhi KK, Gahmberg CG, Identification of blood group A glycoproteins in the human erythrocyte membranes, Biochem Biophys Acta 622, 344–54 (1980).

    Google Scholar 

  116. Marcus DM, Cass LE, Glycosphingolipids with Lewis blood group activity: uptake onto erythrocytes, Science 164, 553–5 (1969).

    Google Scholar 

  117. Oriol R, Samuelson BE, Messeter L, Workshop 1. ABO antibodies – serological behaviour and immunochemical characterization, J lmmunogenet 17, 279–99 (1990).

    Google Scholar 

  118. Szulman AE, The histological distribution of the blood group substances in man as disclosed by immunofluorescence III. The A, B and H antigens in embryos and fetuses from 18 mm in length, J Exp Med 119, 503–16 (1964).

    Google Scholar 

  119. Szulman AE, Marcus DM, The histologic distribution of the blood group substances in man as disclosed by immunofluorescence, Lab Invest 28, 265–74 (1973).

    Google Scholar 

  120. Hakkinen I, A-like blood group antigen in gastric cancer cells of patients in blood groups O and B, J Nat Cancer Inst 44, 1183–93 (1970).

    Google Scholar 

  121. Ichikawa D, Handa K, Withers DA, Hakomori S, Histo-blood group A/B versus H status of human carcinoma cells as correlated with haptotactic motility, Cancer Res 57, 3092–6 (1997).

    Google Scholar 

  122. Lemieux RU, Human blood groups and carbohydrate chemistry, Chem Soc Rev 7, 423–52 (1978).

    Google Scholar 

  123. Lemieux RU, How proteins recognise and bind oligosaccharides. In Carbohydrate antigens edited by Garregg PJ, Lindberg AA, ACS Symposium Series 519, (American Chemical Society, Washington, 1991), pp. 5–18.

    Google Scholar 

  124. Watkins WM, Hassid WZ, The synthesis of lactose by particulate enzyme preparations from guinea pig and bovine mammary glands, J Biol Chem 237, 1432–40 (1962).

    Google Scholar 

  125. Ziderman D, Gompertz S, Smith ZG, Watkins WM, Glycosyltransferases in mammalian gastric mucosal linings, Biochem Biophys Res Commun 29, 56–61 (1967).

    Google Scholar 

  126. Hearn VM, Smith ZG, Watkins WM, An ?-N-acetyl-Dgalactosaminyltransferase associated with the human blood group A character, Biochem J 109, 315–7 (1968).

    Google Scholar 

  127. Race C, Ziderman D, Watkins WM, An ?-D-galactosyltransferase associated with the blood group B character, Biochem J 107, 733–35 (1968).

    Google Scholar 

  128. Race C, Watkins WM, Properties of an ?-D-galactosyltransferase in human tissues from group B donors, Biochem J 114, 86 (1969).

    Google Scholar 

  129. Race C, Watkins WM, The biosynthesis of a blood group Bactive tetrasaccharide, FEBS Lett 10, 279–83 (1969).

    Google Scholar 

  130. Ginsburg V, Formation of guanosine diphosphate-L-fucose from guanosine diphosphate-mannose, J Biol Chem 235, 2196–201 (1960).

    Google Scholar 

  131. Babab H, Hassid WZ, Soluble uridine diphosphate D-galactose: D-glucose ?-4-galactosyltransferase from human milk, J Biol Chem 241, 2672–8 (1966).

    Google Scholar 

  132. Shen L, Grollman EF, Ginsburg V, An enzymic basis for secretor status and blood group specificity in humans, Proc Natl Acad Sci USA 59, 224–30 (1968).

    Google Scholar 

  133. Grollman EF, Kobata A, Ginsburg V, An enzymatic basis for Lewis blood types in man, J Clin Invest 48, 1489–94 (1968).

    Google Scholar 

  134. Kobata A, Grollman EF, Ginsburg V, An enzymic basis for blood Type A in humans, Arch Biochem Biophys 124, 609–12 (1968).

    Google Scholar 

  135. Kobata A, Grollman EF, Ginsburg V, An enzymic basis for blood Type B in humans, Biochem Biophys Res Commun 32, 272–7 (1968).

    Google Scholar 

  136. Chester MA, Watkins WM, ?-L-fucosyltransferases in human submaxillary glands and stomach tissues associated with the H, Lea and Leb blood group characters and ABH secretor status, Biochem Biophys Res Commun 34, 835–42 (1969).

    Google Scholar 

  137. Sawicka, Glycosyltransferases in human plasma, FEBS Lett 16, 346–8 (1971).

    Google Scholar 

  138. Kim YS, Perdoma J, Bella A, Nordberg J, N-acetyl-Dgalactosaminyl transferase in human serum and erythrocyte membranes, Proc Natl Acad Sci USA 68, 1753–6 (1971).

    Google Scholar 

  139. Watkins WM, Biochemistry and genetics of the ABO, Lewis and P blood group systems, Adv Hum Genet 10, 1–136 (1980).

    Google Scholar 

  140. Tuppy H, Schenkel-Brunner H, Enzymatic conversion of human blood group O erythrocytes into A erythrocytes and of A into AB cells, Nature 223, 1273 (1969).

    Google Scholar 

  141. Schenkel-Brunner H, Chester MA, Watkins WM, ?-L-fucosyltransferases in human serum from donors of different ABO, secretor and Lewis blood group phenotypes, Eur J Biochem 17, 218–22 (1972).

    Google Scholar 

  142. Race C, Watkins WM, The enzymic products of the human A and B blood group genes in the serum of “Bombay” Oh donors, FEBS Lett 27, 125–30 (1972).

    Google Scholar 

  143. Chester MA, Yates AD, Watkins WM, Phenyl-β-galactoside as an acceptor substrate for the H-gene associated guanosine diphosphate L-fucose ?-D-galactosyl ?-2-fucosyltransferase, Eur J Biochem 69, 583–92 (1976).

    Google Scholar 

  144. Mulet C, Cartron JP, Badet J, Salmon C, Activity of a-Lfucosyltransferase in human sera and red cell membranes, FEBS Lett 84, 74–8 (1977).

    Google Scholar 

  145. Cory HT, Yates AD, Donald ASR, Watkins WM, Morgan WTJ, The nature of the human blood group P1 determinant, Biochem Biophys Res Commun 61, 1289–96 (1974).

    Google Scholar 

  146. Donald ASR, Soh CPC, Yates AD, Feeney J, Morgan WTJ, Watkins WM, Structure, biosynthesis and genetics of the Sda antigen, Biochem Soc Trans 15, 606–8 (1987).

    Google Scholar 

  147. Schachter H, Michaels MA, Tilley CA, Crookston M, Crookston J, Qualitative differences in the N-acetylgalactosaminyl transferases produced by the human A1 and A2 genes, Proc Natl Acad Sci USA 70, 220–4 (1973).

    Google Scholar 

  148. Topping MD, Watkins WM, Isoelectric points of the human blood group A1, A2 and B-gene associated glycosyltransferases in ovarian cyst fluids and serum, Biochem Biophys Res Commun 64, 89–96 (1975).

    Google Scholar 

  149. Watkins WM, Greenwell P, Yates AD, Blood group A and B transferase levels in serum and red cells of human chimeras, Blood Transfus Immunohematol 23, 531–44 (1980).

    Google Scholar 

  150. Wrobel DM, McDonald I, Race C, Watkins WM, “True” genotype of chimeric twins revealed by blood group gene products in plasma, Vox Sang 27, 283–7 (1974).

    Google Scholar 

  151. Watkins WM, Yates AD, Greenwell P, Bird GWG, Gibson M, Roy RCF, Wingham J, Loeb W, A human chimaera first suspected from analyses of the blood group gene specified glycosyltransferases, J Immunogenet 8, 113–28 (1981).

    Google Scholar 

  152. Iselius L, Lambert B, Lindsten J, Tippett P, Gavin J, Daniels G, Yates A, Ritzen M, Sanstedt B, Unusual XX/XY chimerism, Ann Hum Genet, Lond 43, 89–96 (1979).

    Google Scholar 

  153. Watkins WM, Greenwell P, Yates AD, Johnson PH, Regulation of expression of carbohydrate blood group antigens, Biochimie 70, 1597–1611 (1988).

    Google Scholar 

  154. Fredrick J, Hunter J, Greenwell P, Winter K, Gottshall JL, The A1B genotype expressed as A2B on the red cells of individuals with strong B gene-specified transferase, Transfusion 25, 30–3 (1985).

    Google Scholar 

  155. Watkins WM, Morgan WTJ, The A and H character of the blood group substances secreted by persons belonging to group A2, Acta Genet Statist Med 6, 521–6 (1957).

    Google Scholar 

  156. Clausen H, Levery SB, Nudelman S, Tsuchiya, Hakomori S, Repetitive A epitope (type 3_chain A) defined by blood group A1-specific monoclonal antibody TH-1: chemical basis of qualitative A1 and A2 distinction, Proc Natl Acad Sci USA 82, 1199–1203 (1985).

    Google Scholar 

  157. Schenkel-Brunner H, Studies on blood groups A1 and A2. Further evidence for the predominant influence of quantitative differences in the number of A antigenic sites present on A1 and A2 erythrocytes, Eur J Biochem 122, 511–4 (1982).

    Google Scholar 

  158. Cook GA, Greenwell P, Watkins WM, A rabbit antibody to the blood-group-A-gene specified ?-3-N-acetylgalactosaminyltransferase, Biochem Soc Trans 10, 446–7 (1982).

    Google Scholar 

  159. Yoshida A, Yamaguchi YF, Dave V, Immunological homology of human blood group glycosyltransferases and genetic background of blood group (ABO) determination, Blood 54, 344–50 (1979).

    Google Scholar 

  160. Greenwell P, Yates AD, Watkins WM, UDP-N-acetyl-D-galactosamine as a donor substrate for the glycosyltransferase encoded by the B gene at the human blood group ABO locus, Carbohydr Res 149, 149–70 (1986).

    Google Scholar 

  161. Yates AD, Feeny J, Donald ASR, Watkins WM, Characterisation of a blood group A-active tetrasaccharide synthesised by a blood group B gene specified glycosyltransferase, Carbohydr Res 130, 251–60 (1984).

    Google Scholar 

  162. Yates AD, Overlapping functions of the glycosyltransferases encoded by the blood group A and B genes: Biochemical basis and practical implications. In Progress in Immunohaematology, edited by Moore SB, (American Association of Blood Banks, Arlington VA, 1988), pp. 65–91.

    Google Scholar 

  163. Yates AD, Watkins WM, The biosynthesis of blood group B determinants by the blood group A gene specified ?-3-Nacetylgalactosaminyltransferase, Biochem Biophys Res Commun 109, 958–65 (1982).

    Google Scholar 

  164. Badet J, Ropars C, Cartron JP, Salmon C, Groups of ?-Dgalactosyl transferase activity in sera of individuals with normal B phenotype, Biomedicine 21, 230–2 (1974).

    Google Scholar 

  165. Yamamoto F, Hakomori S, Sugar nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions, J Biol Chem 265, 19257–62 (1990).

    Google Scholar 

  166. Yamamoto F, McNeill PD, Amino acid residue at codon 268 determines both activity and nucleotide-sugar donor substrate specificity of human blood group A and B transferases, J Biol Chem 271, 10515–20 (1996).

    Google Scholar 

  167. Brederode J van, Nigtevecht G van, Dominance relationships between two allelic genes containing glycosyltransferases with different substrate specificities in Melandrium, Genetics 77, 507–20 (1974).

    Google Scholar 

  168. Greenwell P, Watkins WM, Demonstration of fucosyl-?1,2galactoside ?1,3-N-acetyl-galactosaminyltransferase activity in the serum and tissues of blood group O individuals, Proc 9th Symp Glycoconjugates, Lille, France, Abstract E34, (1987).

  169. Harduin-Lepers A, Recchi M-A, Delannoy P, 1994, the year of sialyltransferases, Glycobiology 5, 741–58 (1995).

    Google Scholar 

  170. Weston BW, Smith PL, Kelly RJ, Lowe JB, Molecular cloning of a fourth member of a human ?(1-3)fucosyltransferase gene family, J Biol Chem 267, 24575–84 (1972).

    Google Scholar 

  171. Levine P, Robinson E, Celano M, Briggs O, Falkenburg L, Gene interaction resulting in suppression of blood group substance B, Blood 10, 1100–8 (1955).

    Google Scholar 

  172. Oriol R, Danilovs J, Hawkins BR, A new genetic model proposing that the Se gene is a structural gene closely linked to the H gene, Am J Hum Genet 33, 421–31 (1980).

    Google Scholar 

  173. Race RR, Sanger R, Blood Groups in Man, 6th edition (Blackwell Scientific Publications, Oxford, 1975), pp. 24–7.

    Google Scholar 

  174. Betteridge A, Watkins WM, Variant forms of ?-2-fucosyltransferase in human submaxillary glands from blood group ABH “secretor” and “non-secretor” individuals, Glycoconjugate J 72, 61–78 1985).

    Google Scholar 

  175. Kumasaki T, Yoshida A, Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase, Proc Natl Acad Sci USA 81, 4193–7 (1984).

    Google Scholar 

  176. Le Pendu J, Oriol R, Juszczak G, Liberge G, Rouger P, Salmon C, Cartron J-P, ?-2-L-Fucosyltransferase activity in sera of individuals with H-deficient red cells and normal H antigen in secretions, Vox Sang 44, 360–5 (1983).

    Google Scholar 

  177. Kyprianou P, Betteridge A, Donald ASR, Watkins WM, Purification of the blood group H gene associated ?-2-fucosyltransferase from human plasma, Glycoconjugate J 7, 573–88 (1990).

    Google Scholar 

  178. Larsen RD, Ernst LK, Nair RP, Lowe JB, Molecular cloning, sequence and expression of a human GDP-L-fucose: ?-Dgalactoside ?-2-L-fucosyltransferase cDNA that can form the H blood group antigen, Proc Natl Acad Sci USA 87, 6674–8 (1990).

    Google Scholar 

  179. Oriol R, Candelier J-J, Mollicone R, Moleular genetics of H, Vox Sang 78 (suppl 2), 105–8 (2000).

    Google Scholar 

  180. Rouquier S, Lowe JB, Kelly RJ, Fertitta AL, Lennon GG, Giorgi D, Molecular cloning of a human genomic region containing the H blood group ?(1,2)fucosyltransferase gene and two H locus related DNA restriction fragments, J Biol Chem 270, 4632–9 (1995).

    Google Scholar 

  181. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB, Sequence and expression of a candidate for the human secretor blood group ?1,2-fucosyltransferase gene, J Biol Chem 270, 4640–8 (1995).

    Google Scholar 

  182. Koda Y, Soejima M, Kimura H, Structure and expression of the gene encoding secretor type 2-?-L-fucosyltransferase (FUT2), Eur J Biochem 246, 750–5 (1997).

    Google Scholar 

  183. Ball SP, Tongue N, Gibaud A, Le Pendu J, Mollicone, Gerard G, Oriol R, The human chromosome 19 linkage group FUT1 (H), FUT2 (SE), LE, LU, PEPD, C3, APOC2, D19S7, D19S9, Ann Hum Genet 55, 225–33 (1991).

    Google Scholar 

  184. Johnson PH, Yates AD, Watkins WM, Human salivary fucosyltransferase: Evidence for two distinct a-3-fucosyltransferase activities one of which is associated with the Lewis blood group gene, Biochem Biophys Res Commun 100, 1611–18 (1981).

    Google Scholar 

  185. Prieels JP, Monnom D, Dolmans M, Beyer TA, Hill RL, Co-purification of the Lewis blood group N-acetylglucosaminide ?1,4-fucosyltransferase and an N-acetylglucosaminide ?1,3-fucosyltransferase from human milk, J Biol Chem 256, 10456–63 (1981).

    Google Scholar 

  186. Johnson PH, Watkins WM, Separation of an ?1,3-fucosyltransferase from the blood group Le-gene specified ?3/4-fucosyltransferase in human milk, Biochem Soc Trans 10, 445–6 (1982).

    Google Scholar 

  187. Johnson PH, Donald ASR, Feeney J, Watkins WM, Reassessment of the specificity and general properties of the Lewis blood group gene associated ?-3/4-fucosyltransferase purified from human milk, Glycoconjugate J 9, 251–64 (1992).

    Google Scholar 

  188. Johnson PH, Donald ASR, Watkins WM, Purification and properties of the ?3/4-fucosyltransferase released into the medium during growth of the A431 epidermoid carcinoma cell line, Glycoconjugate J 10, 152–64 (1993).

    Google Scholar 

  189. Johnson PH, Watkins WM, Sialyl compounds as acceptor substrates for the human ?3-and ?3/4-fucosyltransferases, Biochem Soc Trans 13, 1119–20 (1985).

    Google Scholar 

  190. Skacel PO, Watkins WM, Fucosyltransferase expression in human platelets and leucocytes, Glycoconjugate J 4, 267–72 (1987).

    Google Scholar 

  191. Johnson PH, Watkins WM, Sialyl compounds as acceptor substrates for fucosyltransferases in normal and leukaemic human granulocytes, Biochem Soc Trans 15, 396 (1987).

    Google Scholar 

  192. Clarke JL, Watkins WM, Independent regulation of Fuc-TIV and Fuc-TVII genes leading to modulation of cell surface expression in developing myeloid cells, Glycobiology 7, 835–46 (1997).

    Google Scholar 

  193. Kukowska-Latallo JF, Larsten RD, Nair RP, Lowe JB, A cloned human cDNA determines expression of a mouse stage specific embryonic antigen and the Lewis blood group ?(1,3/4)fucosyltransferase, Genes Dev 4, 1288–303 (1990).

    Google Scholar 

  194. de Vries T, Srnka CA, Palcic MP, Swiedler S, van den Eijnden DH, Macher BA, Acceptor specificity of different constructs of human recombinant ?1,3/4-fucosyltransferases, J Biol Chem 270, 8712–22 (1995).

    Google Scholar 

  195. Costa J, Grabenhorst E, Nimzt M, Conradt HS, Stable expression of the Golgi form and secretory variants of human fucosyltransferase III from BHK cells, J Biol Chem 272, 11613–21 (1997).

    Google Scholar 

  196. Mollicone R, Cailleau A, Oriol R, Molecular genetics of H, Se, Lewis and other fucosyltransferases. TCB 4, 235–42 (1995).

    Google Scholar 

  197. Nagai N, Dave V, Kaplan BE, Yoshida A, Human blood group glycosyltransferases I. Purification of N-acetylgalactosaminyltransferase, J Biol Chem 253, 377–9 (1978).

    Google Scholar 

  198. Nagai N, Dave V, Muensch H, Yoshida A, Human blood group glycosyltransferases II. Purification of galactosyltransferase, J Biol Chem 253, 380–1 (1978).

    Google Scholar 

  199. Carne LR, Watkins WM, Human blood group B gene specificied ?-3-galactosyltransferase: purification of the enzyme in serum by biospecific adsorption onto blood group O erythrocytes membranes, Biochem Biophys Res Commun 77, 700–7 (1977).

    Google Scholar 

  200. Whitehead JS, Bella A, Kim YS, An N-acetylgalactosaminyl transferase from human group A plasma. Purification and agarose binding properties, J Biol Chem 249, 3442–7 (1974).

    Google Scholar 

  201. Greenwell P, Edwards YH, Williams J, Watkins WM, Approaches to cloning the genes at the human blood group ABO locus, Biochem Soc Trans 15, 601–3 (1987).

    Google Scholar 

  202. Navaratnam N, Watkins WM, Purification of human A gene specified ?-3-N-acetylgalactosaminyl transferase from human lung. In Proc 10th Int Symp Glycoconjugates Jerusalem, 1989, edited by Sharon N, Lis H, Duksin D, Kahane I, Abstract 154, pp. 225–6.

  203. Navaratnam N, Findlay JBC, Keen JN, Watkins WM, Purifcation, properties and partial amino acid sequence of the blood group A-gene associated ?-3-N-acetylgalactosaminyl transferase from human gut mucosal tissue, Biochem J 271, 93–8 (1990).

    Google Scholar 

  204. Clausen H, White T, Takio K, Titani K, Stroud M, Holmes E, Karkov J, Thim L, Hakomori S, Isolation to homogeneity and partial characterisation of a histo-blood group A transferase (UDP-GalNAc:Fuc ?1-2Gal ?1-3 N-acetylgalactosaminyltransferase) from human lung tissue, J Biol Chem 265, 1139–45 (1990).

    Google Scholar 

  205. Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori S, Cloning and characterisation of DNA complementary to human UDP-GalNAc:Fucal-2Gal 3-GalNac transferase (Histo-blood group A transferase) mRNA, J Biol Chem 265, 1146–51 (1990).

    Google Scholar 

  206. Yamamoto F, McNeill PD, Hakomori S, Genomic organisation of human histo-blood group ABO genes, Glycobiology 5, 51–8 (1995).

    Google Scholar 

  207. Bennett EP, Steffensen R, Clausen H, Weghuis DO, van Kessel AG, Genomic cloning of the human histo-blood group ABO locus, Biochem Biophys Res Commun 206, 308–25 (1995).

    Google Scholar 

  208. Cartron JP, Properties of ?-N-acetylgalactosaminyltransferases in sera of weak A erythrocyte phenotypes, Rev Fr Transfus Immunohaematol 19, 67–88 (1976).

    Google Scholar 

  209. Johnson PH, Hopkinson DA, Detection of ABO blood group polymorphism by denaturing gel electrophoresis, Hum Mol Genet 1, 341–4 (1992).

    Google Scholar 

  210. Yamamoto F, McNeill PD, Yamamoto M, Hakomori S, Bromilow IM, Duguid KM, Molecular genetic analysis of the ABO system: 4. Another type of O allele, Vox Sang 64, 175–8 (1993).

    Google Scholar 

  211. Grunnet N, Steffensen R, Bennett EP, Clausen H, Evaluation of histo-blood group ABO genotyping in a Danish population: frequency of a novel O allele defined as O2, Vox Sang 67, 210–15 (1994).

    Google Scholar 

  212. Olsson ML, Chester MA, Frequent occurrence of a variant O1 gene at the blood group ABO locus, Vox Sang 70, 26–30 (1996).

    Google Scholar 

  213. Olsson ML, Chester MA, Evidence for a new type of O allele at the ABO locus due to a combination of the A2 nucleotide deletion and the Ael nucleotide insertion, Vox Sang 7, 113–7 (1996).

    Google Scholar 

  214. Mourant AE, Kopec AC, Domaniewska-Sobczak K, The distribution of human blood groups and other polymorphisms, (2nd edition, Oxford University Press, London, 1976).

    Google Scholar 

  215. Yamamoto F, McNeill PD, Hakomori S, Human histoblood group A2 transferase coded by A2 allele, one of the A subtypes is characterised by a single base deletion in the coding sequence which results in an additional domain at the carboxy terminal, Biochem Biophys Res Commun 187, 366–74 (1992).

    Google Scholar 

  216. Yamamoto F, Molecular genetics of ABO, Vox Sang 78 (Suppl 2), 91–103 (2000).

    Google Scholar 

  217. Kominata Y, Tsuchiya T, Hata N, Takizawa H, Yamamoto F, Transcription of human ABO histo-blood group genes is dependent upon binding of transcription factor CBF/NF-Y to mini-satellite sequence, J Biol Chem 272, 25890–8 (1997).

    Google Scholar 

  218. Irshaid NM, Chester MA, Olsson ML, Allele related variation in minisatellite repeats involved in the transcription of the blood group ABO gene, Transfus Med 9, 219–26 (1999).

    Google Scholar 

  219. Kominata Y, Hata N, Takizawa H, Tsuchiya T, Tsukada J, Yamamoto F, Expression of human histo-blood group ABO genes is dependent upon DNA methylation of the promoter region, J Biol Chem 24, 37240–50 (1999).

    Google Scholar 

  220. Iwamoto S, Withers DA, Handa K, Hakomori S, Deletion of A antigens in a human cancer cell line is associated with reduced promotor activity of CNF/NF-Y binding region, and possibly with enhanced DNA methylation of A transferase promotor, Glycoconjugate J 16, 659–66 (1999).

    Google Scholar 

  221. Hattori H, Uemura K-I, Taketomi T, Glycolipids of gastric cancer: The presence of blood group A-active glycolipids in cancer tissues from blood group O patients, Biochim Biophys Acta 666, 361–9 (1981).

    Google Scholar 

  222. Clausen H, Bennett EP, Grunnet N, Molecular genetics of ABO histo-blood groups, TCB 2, 79–89 (1994).

    Google Scholar 

  223. Olsson ML, Chester MA, Heterogeneity of the blood group Ax allele: recombination of common alleles can result in the Ax phenotype, Transfus Med 8, 231–8 (1998).

    Google Scholar 

  224. Olsson ML, Guerreiro JF, Zago MA, Chester MA, Molecular analysis of the O alleles at the blood group ABO locus in populations of different ethnic origin reveals novel crossing over events and point mutations, Biochem Biophys Res Commun 234, 779–82 (1997).

    Google Scholar 

  225. Susuki K, Iwata M, Tsuji H, Takagi T, Tamura A, Ishimoto G, Ito S, Matsui K, Miyazaki T, A de novo recombination in the ABO blood group gene and evidence for the occurrence of recombination products, Hum Genet 99, 454–61 (1997).

    Google Scholar 

  226. Seto NOL, Palcic MM, Compston H, Li D, Bundle DR, Narang SA, Sequential interchange of four amino acids from blood group B to blood group A glycosyltransferase boosts catalytic activity and progressivelymodifies substrate recognition inhuman recombinant enzymes, J Biol Chem 272, 14133–8 (1997).

    Google Scholar 

  227. Seto NOL, Compston H, Evans SV, Bundle DR, Narang SA, Palcic MM, Donor substrate specificity of recombinant human blood group A, B and hybrid A-B glycosyltransferases expressed in Escherichia coli, Eur J Biochem 259, 770–5 (1999).

    Google Scholar 

  228. Seto NOL, Compston H, Szpacenko A, Palcic MM, Enzymatic synthesis of blood group A and B trisaccharide analogues, Carbohydr Res 324, 161–9 (2000).

    Google Scholar 

  229. Barbolla L, Mojena M, Bosca L, Presence of antibody to A-and B-transferases in minor incompatible bone marrow transplants, Brit J Haematol 70, 471–6 (1988).

    Google Scholar 

  230. Kominata Y, Fujikura T, Shirnada I, Takisawa H, Hayashi K, Mori T, Monoclonal antibody to blood group glycosyltransferases produced by hybrids constructed with Epstein-Barr-Virus transformed B lymphocytes from a patient with an ABO incompatible bone marrow transplant and mouse myeloma cells, Vox Sang 59, 116–8 (1990).

    Google Scholar 

  231. Greenwell P, Blood group antigens: molecules seeking a function?, Glycoconjugate J 14, 159–73 (1997).

    Google Scholar 

  232. Shima M, Fujimura Y, Nishiyama T, Tsuijiuchi T, Narita N, Matsui T, Titani K, Katayama MF, Yoshioka A, ABO blood group genotype and plasma von Willebrands factor in normal individuals, Vox Sang 68, 236–40 (1995).

    Google Scholar 

  233. Vlot AJ, Mauser-Bunschoten P, Zarkova AG, Haan E, Fruitwagen CLJJ, Sixma JJ, van den Berg HM, The half life of infused Factor VIII is shorter in haemophiliac patients with blood group O than in those with blood group A, Thromb Haemost 83, 65–9 (2000).

    Google Scholar 

  234. Osborn MJ, Rosen SM, Rothfield L, Zeleznick LD, Horecker BL, Lipopolysaccharide of the gram-negative cell wall, Science 145, 783–9 (1964).

    Google Scholar 

  235. Olsson ML, Molecular genetic studies of the blood group ABO locus in man, PhD Thesis, University of Lund (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, W.T., Watkins, W.M. Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity. Glycoconj J 17, 501–530 (2000). https://doi.org/10.1023/A:1011014307683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011014307683

Navigation