Skip to main content
Log in

An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

The ‘heavy ball with friction’ dynamical system x + γx + ∇f(x)=0 is a nonlinear oscillator with damping (γ>0). It has been recently proved that when H is a real Hilbert space and f: HR is a differentiable convex function whose minimal value is achieved, then each solution trajectory tx(t) of this system weakly converges towards a solution of ∇f(x)=0. We prove a similar result in the discrete setting for a general maximal monotone operator A by considering the following iterative method: x k+1x k−α k (x kx k−1)+λ k A(x k+1)∋0, giving conditions on the parameters λ k and α k in order to ensure weak convergence toward a solution of 0∈A(x) and extending classical convergence results concerning the standard proximal method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antipin, A. S.: Minimization of convex functions on convex sets by means of differential equations, Differential Equations 30(9) (1994), 1365–1375.

    Google Scholar 

  2. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim. 38(4) (2000), 1102–1119.

    Google Scholar 

  3. Attouch, H. and Alvarez, F.: The heavy ball with friction dynamical system for convex constrained minimization problems, In: Lecture Notes in Econom. Math. Systems 481, Springer, Berlin, 2000, pp. 25–35.

    Google Scholar 

  4. Attouch, H., Goudou, X. and Redont, P.: The heavy ball with friction method. I. The continuous dynamical system, Comm. Contemp. Math. 2(1) (2000), 1–34.

    Google Scholar 

  5. Brezis, H.: Opérateurs maximaux monotones, Math. Stud. 5, North-Holland, Amsterdam, 1973.

    Google Scholar 

  6. Brezis, H.: Asymptotic Behaviour of Some Evolution Systems: Nonlinear Evolution Equations, Academic Press, New York, 1978.

    Google Scholar 

  7. Bruck, R. E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Funct. Anal. 18 (1975), 15–26.

    Google Scholar 

  8. Güler, O.: On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), 403–419.

    Google Scholar 

  9. Jules, F. and Mainge, P. E.: Numerical approach to stationary solution of a second order dissipative dynamical system, Preprint 99/01, Département de Mathématiques et Informatique, U. des Antilles et de la Guyane, 1999.

    Google Scholar 

  10. Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives, Rev. Française d'Informatique et Recherche Operationnelle 4 (1970), 154–159.

    Google Scholar 

  11. Martinet, B.: Algorithmes pour la résolution de problèmes d'optimisation et de minimax, PhD Thesis, U. Grenoble, 1972.

  12. Minty, G.: Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346.

    Google Scholar 

  13. Moreau, J. J.: Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), 273–299.

    Google Scholar 

  14. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.

    Google Scholar 

  15. Polyak, B. T.: Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat. Mat. Fiz. 4 (1964), 1–17.

    Google Scholar 

  16. Rockafellar, R. T.: Monotone operators and the proximal point algorithm, SIAM J. Control Optim. (1976), 877–898.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, F., Attouch, H. An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping. Set-Valued Analysis 9, 3–11 (2001). https://doi.org/10.1023/A:1011253113155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011253113155

Navigation