Skip to main content
Log in

Tissue engineering: Implications in the treatment of organ and tissue defects

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The loss or failure of organs and tissues due to injury/trauma orageing is one of the major causes for concern in human health care.Tissue engineering, a new emerging field in modern biomedicalsciences, promises a new ray of hope for transplantation biology bycreating viable substitutes for such failing organs ortissues. Tissue engineering is rapidly growing in both scope andimportance within biomedical engineering. It represents themarriage of rapid developments in cellular and molecularbiology on the one hand and materials, chemical and mechanicalengineering on the other. The ability to manipulate andreconstitute tissue function has tremendous clinicalimplications and is likely to play a key role in cell and genetherapies in the coming years. This article discusses the basicprinciples of tissue engineering and some of the attempts made toprovide solutions by engineering tissues in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner J,Tegeler J,Hutzler P,Campoccia D,Pavesio A,Hammer C,Kastenbauer E andNaumann A (1998) Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 42: 172–181

    Google Scholar 

  • American Liver Foundation (1988) Vital Statistics of the United States. Vol II, Part A

  • Brittberg M, Lindahl A,Nilsson A,Ohlsson C,Isaksson O andPeterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331: 889–895

    Google Scholar 

  • Bruining MJ,Blaauwgeers HG,Kuijer R,Pels E,Nuijts RM andKoole LH (2000) Biodegradable three-dimensional networks of poly(dimethylamino ethyl methacrylate). Synthesis, characterization and in vitro studies of structural degradation and cytotoxicity. Biomaterials 21: 595–604

    Google Scholar 

  • Buckwalter JA andMankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration and transplantation. AAOS Inst Course Lect 47: 487–504

    Google Scholar 

  • Butor C andDavoust J (1992) Apical to basolateral surface area ratio and polarity of MDBK cells grown on different supports J Exp Cell Res 203: 115–127

    Google Scholar 

  • Campbell JH,Efendy JL andCampbell GR (1999) Novel vascular graft grown within recipient's own peritoneal cavity. Circ Res 85: 1173–1178

    Google Scholar 

  • Chick WL,Like AA andLauris V (1975) Beta cell culture on synthetic capillaries: an artificial endocrine pancreas. Science 187: 847–849

    Google Scholar 

  • Chick WL,Perna JJ,Lauris V,Low D,Galletti PM,Panol G,Whittemore AD,Like AA,Colton CK andLysaght MJ (1977) Artificial pancreas using living beta cells: effects on glucose homeostasis in diabetic rats. Science 197: 780–782

    Google Scholar 

  • Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4: 415–436

    Google Scholar 

  • Cruise GM,Hegre OD,Lamberti FV,Hager SR,Hill R,Scharp DS andHubbell JA (1999) In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerised poly(ethylene glycol) diacrylate membranes. Cell Transplant 8: 293–306

    Google Scholar 

  • Davalli AM,Scaglia L,Zangen DH,Hollister J,Bonner-Weir S andWeir GC (1996) Vulnerability of islets in the immediate post transplantation period. Dynamic changes in structure and function. Diabetes 45: 1161–1167

    Google Scholar 

  • Elisseeff J,Anseth K,Sims D,McIntosh W,Randolph M andLanger R (1999) Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA 96: 3104–3107

    Google Scholar 

  • Freed LE,Hollander AP,Martin I,Barry JR,Langer R andVunjak-Novakovic G (1998) Chondrogenesis in a cell-polymerbioreactor system. Exp Cell Res 240: 58–65

    Google Scholar 

  • Gates RJ andLazarus NR (1977) Reversal of streptozotocin induced diabetes in rats by intraperitoneal implantation of encapsulated neonatal rabbit pancreatic tissue. Lancet 1257–1259

  • Germain L,Auger FA,Grandbois E,Guignard R,Giasson M,Boisjoly H andGuerin SL (1999) Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 67: 140–147

    Google Scholar 

  • Galletti PM,Trudell LA,Panol G,Richardson P andWhittemore A (1981) Feasibility of small AV shunts for hybrid artificial organs in non-heparinized beagle dogs. Trans Am Soc Artif Organ 17: 185

    Google Scholar 

  • Grande DA,Halberstadt C,Naughton G,Schwartz R andManji R (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 34: 211–220

    Google Scholar 

  • Griffith M,Song Y andWatsky M (1998) Reconstructed cornea from cell lines. Invest Opth Vis Sci 38 (ARVO suppl): 3948

    Google Scholar 

  • Gruessner RW,Sutherland DE,Drangstveit MB,Troppmann C andGruessner AC (1996) Use of FK506 in pancreas transplantation. Transplant Int 9: S251-S257

    Google Scholar 

  • Hardikar AA,Risbud MV andBhonde RR (1999) A simple microcapsule generator design for islet encapsulation. J Biosci 24: 371–376

    Google Scholar 

  • Hardikar AA,Risbud MV andBhonde RR (2000) Improved postcryopreservation recovery following encapsulation of islets in chitosan-alginate beads. Transplant Proc 32: 824–825

    Google Scholar 

  • Hickey DP,Bakthavatsalam R,Bannon CA,O'Malley K,Corr J andLittle DM (1997) Urological complications of pancreatic transplantation. J Urol 157: 2042–2048

    Google Scholar 

  • Hicks CR,Fitton JH,Chirila TV,Crawford GJ andConstable IJ (1997) Keratoprostheses: advancing toward a true artificial cornea. Surv Ophthalmol 42: 175–189

    Google Scholar 

  • Honda M,Yada T,Ueda M andKimata K (2000) Cartilage formation by cultured chondrocytes in a new scaffold made of poly(Llactide-epsilon-caprolactone) sponge. J Oral Maxillofac Surg 58: 767–775

    Google Scholar 

  • Hou QP andBae YH (1999) Biohybrid artificial pancreas based on macrocapsule device. Adv Drug Deliv Rev 35: 271–287

    Google Scholar 

  • Hymer WC,Wilbur DL,Page R,Hibbard E,Kelsey RC andHatfield JM (1981) Pituitary hollow fiber units in vivo and in vitro. Neuroendocrinology 32: 339–349

    Google Scholar 

  • Iwata H,Takagi T,Amemiya H,Shimizu K,Yamashita K andAkutsu T (1992) Agarose for bioartificial pancreas. J Biomed Mater Res 26: 967–977

    Google Scholar 

  • Kawakami Y,Inoue K,Hayashi H,Wang WJ,Setoyama H,Gu YJ,Imamura M,Iwata H,Ikada Y,Nozawa M andMiyazaki J (1997) Subcutaneous xenotransplantation of hybrid artificial pancreas encapsulating pancreatic B cell line (MIN6): functional and histological study. Cell Transplant 6: 541–545

    Google Scholar 

  • Kim BS andMooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16: 224–230

    Google Scholar 

  • Kim BS,Baez CE andAtala A (2000) Biomaterials for tissue engineering. World J Urol 18: 2–9

    Google Scholar 

  • Klapperich C,Graham J,Pruitt L andRies MD (1999) Failure of a metal-on-metal total hip arthroplasty from progressive osteolysis. J Arthroplasty 14: 877–881

    Google Scholar 

  • Koechlin N,Pisam M,Poujeol P,Tauc M andRambourg A (1991) Conversion of a rabbit proximal convoluted tubule (PCT) in to a cell monolayer: ultrastructural study of cell differentiation and redifferentiation. Eur J Cell Biol 54: 224–236

    Google Scholar 

  • Koo J andChang TM (1993) Secretion of erythropoietin from microencapsulated rat kidney cells: preliminary results. Int J Artif Organs 16: 557–560

    Google Scholar 

  • Langer R andVacanti JP (1993) Tissue engineering. Science 260: 920–926

    Google Scholar 

  • Lanza RP,Jackson R,Sullivan A,Ringeling J,McGrath C,Kuhtreiber W andChick WL (1999) Xenotransplantation of cells using biodegradable microcapsules. Transplantation 67: 1105–1111

    Google Scholar 

  • Latkany R,Tsuk A,Sheu MS,Loh IH andTrinkaus-Randall V (1997) Plasma surface modification of artificial corneas for optimal epithelialization. J Biomed Mater Res 36: 29–37

    Google Scholar 

  • Laurencin CT,Attawia MA,Elgendy HE andHerbert KM (1996) Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices. Bone 19 (1 Suppl): 93S-99S

  • Lee YM,Park YJ,Lee SJ,KuY,Han SB,Choi SM,Klokkevold PR andChung CP (2000) Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 71: 410–417

    Google Scholar 

  • Legeais JM andRenard GA (1998) A second generation of artificial cornea (Biokpro II). Biomaterials 19: 1517–1522

    Google Scholar 

  • L'heureux N,Paquet S,Labbe R,Germain L andAugur FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12: 47–56

    Google Scholar 

  • L'hommeau C,Toillon S,Pith T,Kessler L,Jesser C andPinget M (1997) Polyamide 4, 6 membranes for the encapsulation of Langerhans islets: preparation, physico-chemical properties and biocompatibility studies. J Mater Sci Mater Med 8: 163–174

    Google Scholar 

  • Li SM,Garreau H andVert M (1990) Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aquous media. Part 1: poly(DL-lactic acid). J Mater Sci Mater Med 1: 123–130

    Google Scholar 

  • Lim F andSun AM (1980) Microcapsulated islets as bioartificial endocrine pancreas. Science 210: 908–910

    Google Scholar 

  • Lindner MD andEmerich DF (1998) Therapeutic potential of a polymer-encapsulated L-DOPA and dopamine-producing cell line in rodent and primate models of Parkinson's disease. Cell Transplant 7: 165–174

    Google Scholar 

  • Liu HW,Ofosu FA andChang PL (1993) Expression of human factor IX by microencapsulated recombinant fibroblasts Hum Gene Ther 4: 291–301

    Google Scholar 

  • Ma PX,Schloo B,Mooney D andLanger R (1995) Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J Biomed Mater Res 29: 1587–1595

    Google Scholar 

  • Marchand-Brynaert J,Detrait E,Noiset O,Boxus T,Schneider YJ andRemacle C (1999) Biological evaluation of RGD peptidomimetics, designed for the covalent derivatization of cell culture substrata, as potential promotors of cellular adhesion. Biomaterials 20: 1773–1782

    Google Scholar 

  • Minuth WW,Aigner J,Kloth S,Steiner P,Tauc M andJennings ML (1997) Culture of embryonic renal collecting duct epithelia in a gradient container. Pediatr Nephrol 163: 140–147

    Google Scholar 

  • Minuth WW,Sittinger M andKloth S (1998) Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res 291: 1–11

    Google Scholar 

  • Nagamori S,Hasumura S,Matsuura T,Aizaki H andKawada M (2000) Developments in bioartificial liver research: concepts, performance, and applications. J Gastroenterol 35: 493–503

    Google Scholar 

  • Niklason LE,Gao J,Abbott WM,Hirschi KK,Houser S,Marini R andLanger R (1999) Functional arteries grown in vitro. Science 284: 489–493

    Google Scholar 

  • Park A,Wu B andGriffith LG (1998) Integration of surface modifi-cation and 3D fabrication techniques to prepare patterned poly(Llactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Ed 9: 89–110

    Google Scholar 

  • Perka C,Schultz O,Spitzer RS,Lindenhayn K,Burmester GR andSittinger M (2000) Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21: 1145–1153

    Google Scholar 

  • Peters MC,Isenberg BC,Rowley JA andMooney DJ (1998) Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed 9: 1267–1278

    Google Scholar 

  • Prevost P,Floris S,Collier C,Muscat E andRolland E (1997) Application of AN69 hydrogel to islet encapsulation. Evaluation in streptozotocin-induced diabetic rat model. Ann N Y Acad Sci 831: 344–349

    Google Scholar 

  • Risbud MV andBhonde RR (2001a) Suitability of cellulose molecular dialysis membrane as biohybrid pancreas: in vitro biocompatibility evaluation. J Biomed Mater Res 54: 436–444

    Google Scholar 

  • Risbud MV andBhat SV (2001b) Properties of polyvinyl pyrrolidone/(-chitosan) hydrogel membranes and their biocompatibility evaluation by haemorheological method. J Mater Sci Mater Med 12: 75–79

    Google Scholar 

  • Risbud MV,Hardikar AA,Bhat SV andBhonde RR (2000a) pH sensitive freeze dried chitosan-polyvinyl pyrrolidone hydrogels as control release system for antibiotic delivery. J Controlled Rel 68: 23–30

    Google Scholar 

  • Risbud MV,Hardikar AA andBhonde RR (2000b) Chitosanpolyvinyl pyrrolidone hydrogels as candidates for islet immunoisolation: in vitro biocompatibility evaluation. Cell Transplant 9: 25–31

    Google Scholar 

  • Risbud MV,Hardikar AA andBhonde RR (2000c) Fibroblasts growth modulation by chitosan-polyvinyl pyrrolidone hydrogel: implications in wound management? J Biosci 25: 25–31

    Google Scholar 

  • Risbud MV,Bhonde MR andBhonde RR (2000d) Chitosan-PVP hydrogel does not activate macrophages: implications for transplantation applications. Cell Transplant (in press)

  • Ritter EF,Kim YB,Reischl HP,Serafin D,Rudner AM andKlitzman B (1997) Heparin coating of vascular prostheses reduces thromboemboli. Surgery 122: 888–892

    Google Scholar 

  • Robert L andLobat-Robert J (2000) Ageing of connective tissues: from genetic to epigenetic mechanisms. Biogerontology 1: 123–131

    Google Scholar 

  • Saito A,Shirai Y,Ohzeki H,Hayashi J andEguchi S (1997) Acute acalculous cholecystitis after cardiovascular surgery. Surg Today 27: 907–909

    Google Scholar 

  • Schneider AI,Maier-Reif K andGraeve T (1999) Constructing an in vitro cornea from cultures of the three specific corneal cell types In Vitro Cell Dev Biol Anim 35: 515–526

    Google Scholar 

  • Silverman RP,Passaretti D,Huang W,Randolph MA andYaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103: 1809–1818

    Google Scholar 

  • Sittinger M,Bujia J,Rotter N,Reitzel D,Minuth WW andBurmester GR (1996) Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials 17: 237–242

    Google Scholar 

  • Soldani G,Giusti P andMarchetti P (1992) Polyurethrane-Polydimethylsiloxane (PU-PDMS) tubular membranes for pancreatic islet transplantation permselectivity and diffusion studies. J Mater Sci Mater Med 3: 371–376

    Google Scholar 

  • Soon-Shiong P,Feldman E,Nelson R,Heintz R,Yao Q,Yao Z,Zheng T,Merideth N,Skjak-Braek G,Esperik T,Smidsrod O andSandford P (1993) Long-term reversal of diabetes by injection of immunoprotected islet cells. Proc Natl Acad Sci USA 90: 5843–5847

    Google Scholar 

  • Speer DP, Chvapil M, Volz RG and Holmes MD (1979) Enhancement of healing in osteochondral defects by collagen sponge implants. Clin Orthop Rel Res 144: 326–335

    Google Scholar 

  • Stegall MD,Lafferty KJ,Kam I andGill RG (1996) Evidence of recurrent autoimmunity in human allogenic islet transplantation. Transplantation 61: 1272–1274

    Google Scholar 

  • Stockley TL,Robinson KE,Delaney K,Ofosu FA andChang PL (2000) Delivery of recombinant product from subcutaneous implants of encapsulated recombinant cells in canines. J Lab Clin Med 135: 484–492

    Google Scholar 

  • Tatarkiewicz K,Hollister-Lock J,Quickel RR,Colton CK,Bonner-Weir S andWeir GC (1999) Reversal of hyperglycemia in mice after subcutaneous transplantation of macroencapsulated islets. Transplantation 67: 665–671

    Google Scholar 

  • Temenoff JS andMikos AG (2000) Tissue engineering for regeneration of articular cartilage. Biomaterials 21: 431–440

    Google Scholar 

  • Tun T,Inoue K,Hayashi H,Aung T,Gu YJ,Doi R,Kaji H,Echigo Y,Wang WJ,Setoyama H,Imamura M,Maetani S,Morikawa N,Iwata H andIkada Y (1996) A newly developed threelayer agarose microcapsule for a promising biohybrid artificial pancreas: rat to mouse xenotransplantation. Cell Transplant 5 ( 5 Suppl 1): S59-S63

    Google Scholar 

  • Wakitani S,Goto T,Young RG,Mansour JM,Goldberg VM andCaplan AI (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 4: 429–444

    Google Scholar 

  • Walsh-Reitz MM,Aithal HN andToback FG (1984) Na regulates growth of kidney epithelial cells induced by lowering extracellular K concentrations. Am J Physiol 247: C321-C326

    Google Scholar 

  • Weinberg CB andBell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231: 397–400

    Google Scholar 

  • Whang K,Healy KE,Elenz DR,Nam EK,Tsai DC,Thomas CH,Nuber GW,Glorieux FH,Travers R andSprague SM (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 5: 35–51

    Google Scholar 

  • Whang K,Tsai DC,Nam EK,Aitken M,Sprague SM,Patel PK andHealy KE (1998) Ectopic bone formation via rhBMP-2 from porous bioabsorbable polymer scaffolds J Biomed Mater Res 42: 491–499

    Google Scholar 

  • Winn SR,Hammang JP,Emerich DF,Lee A,Palmiter RD andBaetge EE (1994) Polymer-encapsulated cells genetically modi-fied to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons. Proc Natl Acad Sci USA 91: 2324–2328

    Google Scholar 

  • Winn SR,Schmitt JM,Buck D,Hu Y,Grainger D andHollinger JO (1999) Tissue-engineered bone biomimetic to regenerate calvarial critical-sized defects in athymic rats J Biomed Mater Res 45: 414–421

    Google Scholar 

  • Woerly S,Petrov P,Sykova E,Roitbak T,Simonova Z andHarvey AR (1999) Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies. Tissue Eng 5: 467–488

    Google Scholar 

  • Yang MB,Vacanti JP andIngber DE (1994) Hollow fibers for hepatocyte encapsulation and transplantation: studies of survival and function in rats. Cell Transplant 3: 373–385

    Google Scholar 

  • Zekorn T,Siebers U,Filid K,Mavu K,Schmitt U,Bretzel RG andFederlin KF (1989) Bioartificial pancreas: the use of different hollow fibers as a diffusion chamber. Transplant Proc 21: 2748–2750

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risbud, M. Tissue engineering: Implications in the treatment of organ and tissue defects. Biogerontology 2, 117–125 (2001). https://doi.org/10.1023/A:1011585117310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011585117310

Navigation