Skip to main content
Log in

Production of culmorin compounds and other secondary metabolites by Fusarium culmorum and F. graminearum strains isolated from Norwegian cereals

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Twenty-three Fusarium culmorum and 21 F. graminearumisolates were studied for their ability to produce mycotoxins and other secondary metabolites. The strains were cultivated on rice, and the extracts analysed by gas chromatography mass spectrometry (GC-MS) after derivatization with pentafluoropropionic (PFP) reagent. Two F. culmorum strains formed nivalenol and its acetylated derivatives (chemotype II), while all F. graminearum and the otherF. culmorum isolates produced deoxynivalenol (DON) via 3-acetyldeoxynivalenol (3-acetyl-DON) (chemotype IA). 15-hydroxy-culmorin, followed by 5-hydroxy-culmorin were the main other metabolites produced F. culmorum, while 5-, 12- and an unidentified hydroxy-culmorin, suggested to be 14-hydroxy-culmorin, were the main metabolites of F. graminearum. The hydroxy-culmorin profile was found to be significantly different for the two Fusarium species. Minor amounts of about ten other hydroxy-culmorins, four hydroxy-culmorones and 3,13-dihydroxy-epiapotrichothecene were also detected in most cultures. Traces of sambucinol seemed to be present in some of the isolates, but were not detected in any significant amounts. The precursors in the biosynthetic sequence to 3-acetyldeoxynivalenol,7,8-dihydroxycalonectrin and 15-deacetyl-7,8-dihydroxycalonectrin,were detected in most cultures. We also report the assignment of both the 1H and13C NMR data of 15-deacetyl-7,8-dihydroxycalonectrin, which has only been reported incorrectly before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller JD, Greenhalgh R, Wang YZ, Lu M. Trichothecene chemotypes of three Fusarium species. Mycologia 1991; 83: 121–130.

    CAS  Google Scholar 

  2. Mesterhazy A. Selection of head blight resistant wheats through improved seedling resistance. Plant Breeding 1987; 98: 25–36.

    Article  Google Scholar 

  3. Sutton JC. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol 1982; 4: 195–209.

    Article  Google Scholar 

  4. Miller JD. Epidemiology of Fusarium ear diseases of cereals. In: Miller JD, Trenholm HL. eds. Mycotoxins in grain. Compounds other than aflatoxin. Eagon Press, Pennyslvania, 1994; 193.

    Google Scholar 

  5. Snijders CHA, Perkowski J. Effects of head blight caused by Fusarium culmorum on toxin production and weight of wheat kernels. Phytopathology 1990; 80: 566–570.

    CAS  Google Scholar 

  6. Kosiak B, Torp M, Thrane U. The occurrence of Fusarium spp. in Norwegian grain-A survey. Cereal Res Commun 1997; 25: 595–596.

    Google Scholar 

  7. Prelusky DB, Rotter BA, Rotter RG. Toxicology of mycotoxins. In: Miller JD. Trenholm HL. eds. Mycotoxins in grain, compounds other then aflatoxin. St. Paul, Eagan Press, 1994; 359–403.

    Google Scholar 

  8. Rotter BA, Prelusky DB, Pestka JJ. Toxicology of deoxynivalenol (Vomitoxin). J Toxicol Environ Health 1996; 48: 1–34.

    Article  PubMed  CAS  Google Scholar 

  9. Beasley VR. ed. Trichothecene mycotoxicosis: Pathophysiologic effects. CRC Press, Florida, 1989.

    Google Scholar 

  10. Eriksen GS, Alexander J. Fusarium toxins in cereals-a risk assessment. TemaNord 1998: 502. Nordic Council of Ministers. Copenhagen, 1998.

    Google Scholar 

  11. Kuiper-Goodman T, Scott PM, Watanabe H. Risk assessment of the mycotoxin zearalenone. Reg Toxicol Pharmacol 1987; 7: 253–306.

    Article  CAS  Google Scholar 

  12. ApSimon JW, Blackwell B, Greenhalgh R., Meier R-M, Miller D, Pare JRC Taylor A. Secondary metabolites produced by some Fusarium species. In: Steyn PS, Vleggaar. eds. Mycotoxins and Phycotoxins. Proceedings Sixth International IUPAC Symposium on Mycotoxins and Phycotoxins, Pretona, South Africa, 22–25 July 1985, 1986.

  13. Greenhalgh R, Levandier D, Wyman A, Miller JD, Blackwell BA, McAlees AJ, Taylor A. Production and characterization of deoxynivalenol and other secondary metabolites of Fusarium culmorum (CMI 14764, HLX 1503). J Agric Food Chem 1986; 34: 98–102.

    Article  CAS  Google Scholar 

  14. Kasitu GC, ApSimon JW, Blackwelt BA, Fielder DA, Greenhalgh R, Miller JD. Isolation and characterization of culmorin derivatives produced by Fusarium culmorum CMI 14764. Can J Chem 1992; 70: 1308–1316.

    Article  CAS  Google Scholar 

  15. Hesketh AR, Gledhill L, Bycroft BW, Dewick PM, Gilbert J. Potential inhibitors of trichothecene biosynthesis in Fusarium culmorum: Epoxidation of a trichodiene derivative, Phytochemistry 1993; 32: 93–104.

    Article  Google Scholar 

  16. Langseth W, Bernhoft A, Rundberget T, Kosiak B, Gareis M. Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia 1999; 144: 103–113.

    Article  CAS  Google Scholar 

  17. Foster BC, Trenholm HL, Friend DW. Thompson BK, Hartin KE. Evaluation of different sources of deoxynivalenol (vomitoxin) fed to swine. Can J Anim Sci 1986; 66: 1149–1154.

    CAS  Google Scholar 

  18. Trenholm HL, Foster BC, Charmley LL, Thompson BK, Hartin KE, Coppock RW, Albassam MA. Effects of feeding diets containing Fusarium (naturally) contaminated wheat or pure deoxynivalenol (DON) in growing pigs. Can J Anim Sci 1994; 74: 361–369.

    CAS  Google Scholar 

  19. Dowd PE, Miller JD, Greenhalgh R. Toxicity and interactions of some Fusarium graminearum metabolites to caterpillars. Mycologia 1989; 81: 646–650.

    CAS  Google Scholar 

  20. Rotter RG, Thompson BK, Trenholm HL. Prelusky DB, Hartin KE, Miller JD. A preliminary examination of potential interactions between deoxynivalenol (DON) and other selected Fusarium metabolites in growing pigs. Can J Anim Sci 1992; 72: 107–116.

    CAS  Google Scholar 

  21. Samson A, Hoekstra ES, Frisvad JC, Filtenborg O. Introduction to food-borne fungi, 4th edn, Centraalbureau voor Schimmelcultures. Baarn, Wageningen, 1995.

    Google Scholar 

  22. Nelson PE, Toussoun TA, Marasas WFO. Fusarium species, an illustrated manual for identification. The Pennsylvania State University Press, University Park, 1983.

    Google Scholar 

  23. Langseth W, Rundberget T. The occurrence of HT-2 toxin and other trichothecenes in Norwegian cereals. Mycopathotogia 2000, in press.

  24. Langseth W, Gehbremeskel M. Kolsaker P. Gas chromatographic-mass spectrometric (GC-MS) determination of various Fusarium metabolites as their pentafluoropropionic (PFP) derivatives. Manuscript.

  25. Blackwell BA, Savard ME. Spectral characteristics of secondary metabolites from Fusarium fungi. In: Miller JD, Trenholm HL. eds. Mycotoxins in grain. Compounds other than aflatoxin. Eagon Press, Pennsylvania, 1994; 59–257.

    Google Scholar 

  26. Ichinoc M. Kurata H, Sugiura Y. Ueno Y. Chemotaxonomy of Gibberella zeae with special reference to production of trichothecenes and zearalenone. Appl Environ Microbiol 1983; 46: 1364–1369.

    Google Scholar 

  27. Elen O, Langseth W, Liu W, Haug G, Skinnes H, Gullord M, Sundheim L. The content of deoxynivalenol and occurrence of Fusarium spp. in cereals from field trials in Norway. Cereal Research Commun 1997; 25: 585–586.

    CAS  Google Scholar 

  28. Logrieco A, Manka M, Altomare C, Bottalico A. Pathogenicity of Fusarium graminearum chemotypes towards corn, wheat, triticale and rye. J Phytopathology 1990; 130: 197–204.

    Google Scholar 

  29. Perkowski J, Kiecana I, Schumacher U, Muller HM, Chetkowski J, Golinski P. Head infection and accumulation of Fusarium toxins in kernels of 12 barley genotypes inoculated with Fusarium graminearum isolates of two chemotypes. European J Plant Pathology 1997; 103: 85–90.

    Article  CAS  Google Scholar 

  30. Gang G. Miedaner T, Schuhmacher U, Schollenberger M, Geiger HH. Deoxynivalenol and nivalenol production by Fusarium culmorum isolates differing in aggressiveness toward winter rye. Phytopathology 1998; 88: 879–884.

    CAS  PubMed  Google Scholar 

  31. Perkowski J, Kiecana I, Schumacher U, Muller H-M, Chelkowski J, Golinski P. Head blight and biosynthesis of Fusarium toxins in barley kernels field inoculated with Fusarium culmorum. European J Plant Pathology 1996; 102: 491–496.

    Article  CAS  Google Scholar 

  32. Pineiro MS, Scott PM, Kanhere SR. Mycotoxin producing potential of Fusarium graminearum isolates from Uruguayan barley. Mycopathologia 1996; 132: 167–172.

    Article  CAS  Google Scholar 

  33. Ashley JN, Hobbs BC, Raistrick HLV. Studies in the biochemistry of micro-organisms LIII. The crystalline colouring matters of Fusarium culmorum (W.G. Smith) Sacc. and related forms. Biochem J 1937; 31: 385–397.

    PubMed  CAS  Google Scholar 

  34. Barton DHR, Werstiuk NH. The constitution and stereochemistry of culmorin. Chem Commun 1967; 1: 30–31.

    Google Scholar 

  35. Barton DHR. Werstiuk NH. Sesquiterpenoids. Part XIV. The constitution and stereochemistry of culmorin. J Chem Soc (C) 1968; 148–155.

  36. Hanson JR, Nyfeler R. Studies in terpenoid biosynthesis. Part 18. Biosynthesis of culmorin. J Chem Soc Perkin Trans 1976; 23: 2470–2475.

    Google Scholar 

  37. Torp M, Langseth W. Production of T-2 toxin by a Fusarium resembling Fusarium poae. Mycopathologia 2000, in press.

  38. Zamir LO, Devor KA, Sauriol F. Biosynthesis of the trichothecene 3-acetyldeoxynivalenol. J Biological Chem 1991; 266: 14992–15000.

    CAS  Google Scholar 

  39. Zamir LO, Devor KA, Nikolakakis A, Sauriol F. Biosynthesis of the trichothecene 3-acetyldeoxynivalenol: cell-free hydroxylations of isotrichodermin. Can J Microbiol 1996; 42: 828–834.

    Article  CAS  Google Scholar 

  40. Liu W, Sundheim L, Langseth W. Trichothecene production and the relationship to vegetative compatibility groups in Fusarium poae. Mycopathologia 1998; 140: 105–114.

    Article  CAS  Google Scholar 

  41. ApSimon JW, Blackwell BA. Blais L, Fielder DA, Greenhalgh R, Kasitu G, Miller JD, Savard M. Mycotoxins from Fusarium species: detection, determination and variety. Pure Appl Chem 1990; 62: 1339–1346.

    CAS  Google Scholar 

  42. Lauren DR, Sayer ST, DiMenna ME. Trichothecene production by Fusarium species isolated from grain and pasture throughout New Zealand. Mycopathologia 1992; 120: 167–176.

    Article  CAS  Google Scholar 

  43. Zamir LO, Nikolakakis A, Sauriol F, Mamer O. Biosynthesis of trichothecenes and apotrichothecenes. J Agric Food Chem 1999; 47: 1823–1835.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langseth, W., Ghebremeskel, M., Kosiak, B. et al. Production of culmorin compounds and other secondary metabolites by Fusarium culmorum and F. graminearum strains isolated from Norwegian cereals. Mycopathologia 152, 23–34 (2001). https://doi.org/10.1023/A:1011964306510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011964306510

Navigation