Skip to main content
Log in

In Vivo Properties of an In Situ Forming Gel for Parenteral Delivery of Macromolecular Drugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study characterizes the in vivoproperties of an in situforming gel, comprising an IPC of water-soluble polymers, PMA and PEG, for sustained release of macromolecular drugs.

Methods. 40, 50 or 60% w/v formulations were injected subcutaneously in a rat model either alone, or containing model macromolecules, 3A2-ATG-psODN or REV-psODN, to (i) determine the approximate gelling and residence time of the gel at the site of injection, (ii) assess the biological efficacy of the formulation using a MZ sleep time model, and (iii) demonstrate specificity of the sequence and selectivity of the psODNs by measuring changes in microsomal enzyme levels and urine volumes.

Results. A sol to gel transition requires 15 min in vivo, and the 60% w/v IPC gel remains at the site of injection for up to 72 hr. The MZ sleep times and CYP3A2 expression due to 3A2-ATG-psODNs released from the gel are significantly different compared to that of REV-psODNs.

Conclusions. The IPC solutions exhibit phase transformation in vivo, and demonstrate no evidence of toxicity. The pharmacological effects observed from the of release of 3A2-ATG-psODNs suggest that the formulation can entrap, protect, and sustain the delivery of macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Tice and S. Tabibi. Parenteral Drug Delivery: Injectables. In A. Kydonieus (eds). Treatise on Controlled Drug Delivery, Marcel Dekker, Inc., 1992. pp. 319-336.

  2. A. Kharenko and V. Kemenova. Controlled release from oral formulations based on interpolymeric polymethacrylic-polyethylene glycol complex. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 22:232 (1995).

    Google Scholar 

  3. C. Bell and N. Peppas. Poly(methacrylic acid-g-ethylene glycol) hydrogels as pH responsive biomedical materials. Mat. Res. Soc. Symp. Proc. 331:199-204 (1994).

    Google Scholar 

  4. B. Haglund, R. Joshi, and K. Himmelstein. An in situ gelling system for parenteral delivery. J Control. Rel. 41:229-235 (1995).

    Google Scholar 

  5. M. Shively, B. Coonts, W. Renner, J. Southard, and A. Bennett. Physico-chemical characterization of a polymeric injectable implant delivery system. J Control. Rel. 33:237-243 (1995).

    Google Scholar 

  6. W. Lambert and K. Peck. Development of an in situforming biodegradable polylactide-co-glycolide system for the controlled release of proteins. J. Control. Rel.189-195 (1995).

  7. J. Desjardins and P. Iversen. Inhibition of the rat cytochrome P450 3A2 by an antisense phosphorothioate oligodeoxynucleotide in vivo. J. Pharmacol. Exp. Ther. 275:1608-1613 (1995).

    PubMed  Google Scholar 

  8. K. Thummel, D. Shen. T. Podoll, K. Kunze, W. Trager, P. Hartwell, V. Raisys, C. Marsh, J. McVicar, D. Barr, J. Perkins, and R. Carithers Jr. Use of midazolam as a human cytochrome P450 3A probe. J. Pharmacol. Exp. Ther. 271:549-556 (1994).

    PubMed  Google Scholar 

  9. P. Watkins. Non-invasive test of CYP3A enzymes. Pharmacogenetics 4:171-184 (1994).

    PubMed  Google Scholar 

  10. J. Desjardins, B. Sproat, B. Beijer, M. Blaschke, M. Dunkel, W. Gerdes, J. Ludwig, V. Reither, T. Rupp, and P. Iversen. Pharmacokinetics of a synthetic, chemically modified hammerhead ribozyme against the rat cytochrome P-450 3A2 mRNA after single intravenous injections. J. Pharmacol. Exp. Ther. 278:1419-1427 (1996).

    PubMed  Google Scholar 

  11. M. Franklin and R. Estabrook. On the inhibitory action of mersalyl on microsomal drug oxidation: A rigid organization of the electron transport chain. Arch. Biochem. 143:318-329 (1971).

    PubMed  Google Scholar 

  12. M. Bradford. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 (1976).

    Article  PubMed  Google Scholar 

  13. F. Gonzalez. The molecular biology of the cytochrome P450s. Pharmacol. Rev. 40:243-287 (1989).

    Google Scholar 

  14. T. Nash. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55:416-421 (1953).

    PubMed  Google Scholar 

  15. M. Burke, S. Thompson, C. Elcombe, J. Halpert, T. Haaparanta and R. Mayer. Etoxy-, Pentoxy-, and benzyloxyphenoxazones and homologues: A series of substrates to distinguish between different induced cytochrome P450s. Biochem. Pharmacol. 34:3337-3345 (1985).

    PubMed  Google Scholar 

  16. L. Reinke and M. Moyer. P-nitrophenol hydroxylation a microsomal oxidation which is highly inducible by ethanol. Drug Metab. and Disp. 13:548-552 (1985).

    Google Scholar 

  17. J. Nishikawa, T. Yabe, A. Kast, and H. Albert. Circadian rhythm of the liver of male rats pre-treated with phenobarbital-II. Hexabarbital sleeping times and lipid contents in liver and serum. Chronoiol. Inter. 4:175-182 (1987).

    Google Scholar 

  18. P. Robel, E. Baulieu, M. Synguelakis, and F. Halberg. Chronobiologic dynamics of Δ5-3b-hydroxysteriods and glucocorticoids in rat brain and plasma and human plasma. Prog. Clin. Biol. Res. 227A:451-465 (1987).

    PubMed  Google Scholar 

  19. D. Simmons, McQuiddy, and C. Kasper. Induction of the hepatic mixed-function oxidase system by synthetic glucocorticoids. J. Biol. Chem. 262:326-332 (1987).

    PubMed  Google Scholar 

  20. M. Paine, D. Shen, K. Kunze, J. Perkins, C. March, J. Mc Vicar, D. Barr, B. Gillies, and K. Thummel. First-pass metabolism of midazolam by the human intestine. Clin. Pharmacol. Ther. 60(1):14-24 (1996).

    PubMed  Google Scholar 

  21. K. Thummel, D. O'Shea, M. Paine, D. Shen, K. Kunze, J. Perkins, and G. Wilkinson. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin. Pharmacol. Ther. 59(5):491-502 (1996).

    PubMed  Google Scholar 

  22. M. Paine, D. Shen, K. Kunze, J. Perkins, C. March, J. McVicar, D. Barr, B. Gillies, and K. Thummel. First-pass metabolism of midazolam by the human intestine. Clin. Pharmacol. Ther. 60(1):14-24 (1996).

    PubMed  Google Scholar 

  23. K. Thummel, D. O'Shea, M. Paine, D. Shen, K. Kunze, J. Perkins, and G. Wilkinson. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin. Pharmacol. Ther. 59(5):491-502 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, R., Arora, V., Desjardins, J.P. et al. In Vivo Properties of an In Situ Forming Gel for Parenteral Delivery of Macromolecular Drugs. Pharm Res 15, 1189–1195 (1998). https://doi.org/10.1023/A:1011979505697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011979505697

Navigation