Skip to main content
Log in

Muon Spin Rotation and Relaxation Experiments on Thin Films

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The recent development at the Paul Scherrer Institute of a beam of low energy muons allows depth dependent muon spin rotation and relaxation investigations in thin samples, multilayers and near surface regions (low energy μSR, LE-μSR). After a brief overview of the LE-μSR method, some representative experiments performed with this technique will be presented. The first direct determination of the field profile just below the surface of a high-temperature superconductor in the Meissner phase illustrates the power and sensitivity of low energy muons as near-surface probe and is an example of general application to depth profiling of magnetic fields. The evolution of the flux line lattice distribution across the surface of a YBa2Cu3O7 film in the vortex phase has been investigated by implanting muons on both sides of a normal-superconducting boundary. A determination of the relaxation time and energy barrier to thermal activation in iron nanoclusters, embedded in a silver thin film matrix (500nm), demonstrates the use of slow muons to measure the properties of samples that cannot be made thick enough for the use of conventional μSR. Other experiments investigated the magnetic properties of thin Cr(001) layers at thicknesses above and below the collapse of the spin density wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Morenzoni, E., In: S. Lee et al. (eds), Physics and Applications of Low Energy Muons, Muon Science, IOP Publishing, Bristol, 1999.

    Google Scholar 

  2. Harshman, D. R. et al., Phys. Rev. Lett. 56 (1986), 2850.

    Google Scholar 

  3. Morenzoni, E., Kottmann, F., Maden, D., Matthias, B., Meyberg, M., Prokscha, Th., utzke, Th. and Zimmermann, U., Phys. Rev. Lett. 72 (1994), 2793.

    Google Scholar 

  4. Morenzoni, E., Prokscha, Th., Hofer, A., Matthias, B., Meyberg, M., Wutzke, Th., Birke, M., Glückler, H., Litterst, J., Niedermayer, Ch. and Schatz, G., J. Appl. Phys. 81 (1997), 3340.

    Google Scholar 

  5. Prokscha, T., Morenzoni, E., David, C., Hofer, A., Glückler, H. and Scandella, A., Appl. Surf. Sci. 172 (2001), 235.

    Google Scholar 

  6. Niedermayer, Ch., Forgan, E. M., Glückler, H., Hofer, A., Morenzoni, E., Pleines, M., Prokscha, T., Riseman, T. M., Birke, M., Jackson, T. J., Litterst, J., Long, M. W., Luetkens, H., Schatz, A. and Schatz, G., Phys. Rev. Lett. 83 (1999), 3932.

    Google Scholar 

  7. Rainford, B. D. and Daniel, G. J., Hyp. Interact. 87 (1994), 1129; Riseman, T. M. and Forgan, E. M., Phys. B 289/290 (2000), 716.

    Google Scholar 

  8. Eckstein, W., Computer Simulations of Ion-Solid Interactions, Springer, Berlin, 1991.

    Google Scholar 

  9. Glückler, H., Morenzoni, E., Prokscha, T., Birke, M., Forgan, E. M., Hofer, A., Jackson, T. J., Litterst, J., Luetkens, H., Niedermayer, Ch., Pleines, M., Riseman, T.M. and Schatz, G., Phys. B 289/290 (2000), 658.

    Google Scholar 

  10. Sidorenko, A. D., Smilga, V. P. and Fesenko, V. I., Hyp. Interact. 63 (1990), 49.

    Google Scholar 

  11. Jackson, T. J., Riseman, T. M., Forgan, E. M., Glückler, H., Prokscha, T., Morenzoni, E., Pleines, M., Niedermayer, Ch., Schatz, G., Luetkens, H. and Litterst, J., Phys. Rev. Lett. 84 (2000), 4958.

    Google Scholar 

  12. London, F. and London, H., Proc. Roy. Soc. London A 149 (1935), 71.

    Google Scholar 

  13. Hardy, W. N. et al., Phys. Rev. Lett. 70 (1993), 3999.

    Google Scholar 

  14. Sonier, J. E. et al., Phys. Rev. Lett. 72 (1994), 774.

    Google Scholar 

  15. Pippard, A. B., Proc. Roy. Soc. London A 216 (1953), 547.

    Google Scholar 

  16. Halbritter, J., Z. Phys. 243 (1971), 201.

    Google Scholar 

  17. Jackson, T. J., Binns, C., Forgan, E. M., Morenzoni, E., Niedermayer, Ch., Glückler, H., Hofer, A., Luetkens, H., Prokscha, T., Riseman, T.M., Schatz, A., Birke, M., Litterst, J., Schatz, G. and Weber, H. P., J. Phys. Condens. Matter 12 (2000), 1399.

    Google Scholar 

  18. Jacobs, I. S. and Bean, C. P., Fine particles, thin films and exchange anisotropy, In: G. T. Rado and H. Suhl (eds), Magnetism, Vol. III, Academic Press, New York, 1963, p. 271.

    Google Scholar 

  19. Baker, S. H. et al., Rev. Sci. Instrum. 68 (1997), 1853.

    Google Scholar 

  20. Uemura, Y. J. et al., Phys. Rev. B 31 (1985), 546.

    Google Scholar 

  21. Edmonds, K. W. et al., Phys. Rev. B 60 (1999), 472.

    Google Scholar 

  22. Meersschaut, J. et al., Phys. Rev. Lett. 75 (1995), 1638.

    Google Scholar 

  23. Zabel, H., J. Phys. Condens. Matter 11 (1999), 9303.

    Google Scholar 

  24. Fullerton, E. E. et al., Phys. Rev. Lett. 75 (1995), 330.

    Google Scholar 

  25. Luetkens, H., Korecki, J., Glückler, H., Morenzoni, E., Prokscha, T., Schatz, A., Birke, M., Forgan, E., Handke, B., Hofer, A., Jackson, T. J., Kubik, M., Litterst, F. J., Niedermayer, Ch., Pleines, M., Riseman, T. M., Schatz, G., Slezak, T. and Weber, H. P., Phys. B 289/290 (2000), 326.

    Google Scholar 

  26. Mibu, K. et al., J. Magn. Magn. Mater. 198–199 (1999), 689.

    Google Scholar 

  27. Demuynck, S., Meersschaut, J., Dekoster, J., Swinnen, B., Moons, R., Vantomme, A., Cottenier, S. and Rots, M., Phys. Rev. Lett. 81 (1998), 2562.

    Google Scholar 

  28. Nieuwenhuys, G. J., Morenzoni, E., Hesselberth, M. B. S., Galli, F., Mydosh, J. A., Glückler, H., Prokscha, T., Khasanov, R., Luetkens, H., Niedermayer, C. and Pleines, M., PSI Scientific Report, 1999.

  29. Foroughi, F., Morenzoni, E. and Prokscha, T., PSI proposal, August 2000.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morenzoni, E., Forgan, E.M., Glückler, H. et al. Muon Spin Rotation and Relaxation Experiments on Thin Films. Hyperfine Interactions 133, 179–195 (2001). https://doi.org/10.1023/A:1012268825876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012268825876

Navigation