Skip to main content
Log in

Design and Rapid Prototyping of Thin-Film Laminate-Based Microfluidic Devices

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An integrated microfluidic design, modeling, and rapid prototyping process is presented. It is based on laser cutting and lamination of individual thin layers of plastic. The process allows the rapid and low-cost manufacturing of both simple and complex 3-dimensional microfluidic flow structures that are routinely designed, fabricated, and tested within the space of 24 hours. It has yielded microfluidic elements and systems, such as mixers, separators, and detectors, as well as complete microfluidic integrated circuits that have been used with complex biological samples such as whole blood. Both “active”, machine-controlled microfluidic disposables as well as “passive”, self-contained cards that do not require any external instrument are presented. Such devices include a disposable hematology analyzer chip, as well as blood separation and analysis tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bousse, B. Dubrow, and K. Ulfelder, in Micro Total Analysis Systems '98, D.J. Harrison and A. van den Berg, (eds), (Kluwer Academic Publishers, Dordrecht, 1998), 271.

    Google Scholar 

  2. R. Mathies, P. Simpson, and A. Woolley, in Micro Total Analysis Systems '98, D.J. Harrison and A. van den Berg, (eds), (Kluwer Academic Publishers, Dordrecht, 1998), 1.

    Google Scholar 

  3. F. Pourahmadi, M. Taylor, G.A. Kovacs, K. Lloyd, S. Sakai, T. Schafer, B. Helton, L. Western, S. Zaner, J. Ching, W.A. McMillan, P. Belgrader, and M.A. Northrup, Clinical Chemistry 46(9), 1511-1513 (2000).

    Google Scholar 

  4. B.H. Weigl and P. Yager, Science 283, 346 (1998).

    Google Scholar 

  5. V.L. Bogdanov, Y.H. Rogers, and M.T. Boyce-Jacino, Ultrasensitive Biochemical Diagnostics II, SPIE 2985, 129-137 (1997).

  6. L.J. Kricka, Clin. Chem. 44, 2008-2014 (1998).

    Google Scholar 

  7. N.H. Chiem and D.J. Harrison, Clin. Chem. 44, 591-598 (1998).

    Google Scholar 

  8. P. Yager, D. Bell, J.P. Brody, D. Qin, C. Cabrera, A. Kamholz, and B.H. Weigl, Micro Total Analysis Systems '98, D.J. Harrison and A. van den Berg, (eds), (Kluwer Academic Publishers, Dordrecht, 1998), 207-212.

    Google Scholar 

  9. H. Becker, W. Dietz, and P. Dannberg, in Micro Total Analysis Systems '98, D.J. Harrison and A. van den Berg, (eds), (Kluwer Academic Publishers, Dordrecht, 1998), 253.

    Google Scholar 

  10. A.E. Kamholz, B.H. Weigl, B.A. Finlayson, and P. Yager, Anal. Chem. 71(23) 5340-5347 (1999).

    Google Scholar 

  11. These devices are now available in form of an Evaluation Kit at Micronics, Inc.

  12. J.P. Brody, T.D. Osborn, F.K. Forster, and P. Yager, Sensors and Actuators (A), A54 Proceedings of Transducers '95, (1–3), 704-708 (1996).

    Google Scholar 

  13. M.R. Holl, P. Galambos, F.K. Forster, J.P. Brody, M.A. Afromowitz, and P. Yager, Proc. ASME Meeting 189-195 (1996).

  14. A.E. Kamholz, B.H. Weigl, B.A. Finlayson, and P. Yager, Anal. Chem. 71(23), 5340-5347 (1999).

    Google Scholar 

  15. K. Macounová, C.R. Cabrera, M.R. Holl, and P. Yager, Anal. Chem. submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigl, B.H., Bardell, R., Schulte, T. et al. Design and Rapid Prototyping of Thin-Film Laminate-Based Microfluidic Devices. Biomedical Microdevices 3, 267–274 (2001). https://doi.org/10.1023/A:1012448412811

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012448412811

Navigation