Skip to main content
Log in

A Review of Forest Gap Models

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Forest gap models, initially conceived in 1969 as a special case of individual-tree based models, have become widely popular among forest ecologists for addressing a large number of applied research questions, including the impacts of global change on long-term dynamics of forest structure, biomass, and composition. However, they have been strongly criticized for a number of weaknesses inherent in the original model structure. In this paper, I review the fundamental assumptions underlying forest gap models, the structure of the parent model JABOWA, and examine these criticisms in the context of the many alternative formulations that have been developed over the past 30 years.Four assumptions originally underlie gap models: (1) The forest is abstracted as a composite of many small patches of land, where each can have a different age and successional stage; (2) patches are horizontally homogeneous, i.e., tree position within a patch is not considered; (3) the leaves of each tree are located in an indefinitely thin layer (disk) at the top of the stem; and (4) successional processes are described on each patch separately, i.e., there are no interactions between patches. These simplifications made it possible to consider mixed-species, mixed-age forests, which had been difficult previously mainly because of computing limitations.The structure of JABOWA is analysed in terms of the functional relationships used for formulating the processes of tree establishment, growth, and mortality. It is concluded that JABOWA contains a number of unrealistic assumptions that have not been questioned strongly to date. At the same time, some aspects of JABOWA that were criticized strongly in the past years are internally consistent given the objectives of this specific model.A wide variety of formulations for growth processes, establishment, and mortality factors have been developed in gap models over the past 30 years, and modern gap models include more robust parameterizations of environmental influences on tree growth and population dynamics as compared to JABOWA. Approaches taken in more recent models that led to the relaxation of one or several of the four basic assumptions are discussed. It is found that the original assumptions often have been replaced by alternatives; however, no systematic analysis of the behavioral effects of these conceptual changes has been attempted to date.The feasibility of including more physiological detail (instead of using relatively simple parameterizations) in forest gap models is discussed, and it is concluded that we often lack the data base to implement such approaches for more than a few commercially important tree species. Hence, it is important to find a compromise between using simplistic parameterizations and expanding gap models with physiology-based functions and parameters that are difficult to estimate. While the modeling of tree growth has received a lot of attention over the past years, much less effort has been spent on improving the formulations of tree establishment and mortality, although these processes are likely to be just as sensitive to global change as tree growth itself. Finally, model validation issues are discussed, and it is found that there is no single data source that can reliably be used for evaluating the behavior of forest gap models; instead, I propose a combination of sensitivity analyses, qualitative examinations of process formulations, and quantitative tests of gap models or selected submodels against various kinds of empirical data to evaluate the usefulness of these models for assessing their utility for predicting the impacts of global change on long-term forest dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber, J. D. and Melillo, J.M.: 1982, FORTNITE: A Computer Model of Organic Matter and Nitrogen Dynamics in Forest Ecosystems, Univ. of Wisconsin Res. Bulletin R3130.

  • Aber, J. D., Botkin, D. B., and Melillo, J. M.: 1978, ‘Predicting the Effects of Different Harvesting Regimes on Forest Floor Dynamics in Northern Hardwoods’, Can. J. For. Res., 8, 306-315.

    Google Scholar 

  • Aber, J. D., Botkin, D. B. and Melillo, J. M.: 1979, ‘Predicting the effects of different harvesting regimes on productivity and yield in northern hardwoods’, Can. J. Forest Res. 9, 10–14.

    Google Scholar 

  • Aber, J. D., Melillo, J. M., and Federer, C. A.: 1982, ‘Predicting the Effects of Rotation Length, Harvest Intensity, and Fertilization on Fiber Yield from Northern Hardwood Forests in New England’, Forest Sci. 28, 31–45.

    Google Scholar 

  • Acevedo, M. F., Urban, D. L., and Ablan, M.: 1995, ‘Transition and Gap Models of Forest Dynamics’, Ecol. Appl. 5, 1040–1055.

    Google Scholar 

  • Allen, C. D. and Breshears, D. D.: 1998, ‘Drought-Induced Shift of a Forest-Woodland Ecotone: Rapid Landscape Response to Climate Variation’, Proc. Nat. Acad. Sci. U.S.A. 95, 14839–14842.

    Google Scholar 

  • Amthor, J. S.: 1995, ‘Terrestrial Higher-Plant Response to Increasing Atmospheric [CO2] in Relation to the Global Carbon Cycle’, Global Change Biol. 1, 243–274.

    Google Scholar 

  • Andrzejczyk, T. and Brzeziecki, B.: 1995, ‘The Structure and Dynamics of Old-Growth Pinus sylvestris (L.) Stands in the Wigry National Park, North-Eastern Poland’, Vegetatio 117, 81–94.

    Google Scholar 

  • Aubréville, A.: 1938, ‘La forêt coloniale: Les forêts de l'Afrique occidentale française’, Ann. Acad. Sci. Colon. Paris 9, 1–245.

    Google Scholar 

  • Badeck, F.-W., Lischke, H., Bugmann, H., Hickler, T., Hönninger, K., Lasch, P., Lexer, M. J., Mouillot, F., Schaber, J., and Smith, B.: 2001, ‘Tree Species Composition in European Pristine Forests. Comparison of Stand Data to Model Predictions’, Clim. Change 51, 307–347.

    Google Scholar 

  • Belsky, A. J. and Canham, C. D.: 1994, ‘Forest Gaps and Isolated Savanna Trees’, Bioscience 44, 77–84.

    Google Scholar 

  • Bonan, G. B.: 1993, ‘Do Biophysics and Physiology Matter in Ecosystem Models?’, Clim. Change 24, 281–285.

    Google Scholar 

  • Bonan, G. B. and Sirois, L.: 1992, ‘Air Temperature, Tree Growth, and the Northern and Southern Range Limits to Picea mariana’, J. Veg. Sci. 3, 495–506.

    Google Scholar 

  • Bormann, F. H., Siccama, T. G., Likens, G. E., and Whittaker, R. H.: 1970, ‘The Hubbard Brook Ecosystem Study: Composition and Dynamics of the Tree Stratum’, Ecol. Monogr. 40, 373–388.

    Google Scholar 

  • Bossel, H. and Krieger, H.: 1994, ‘Simulation of Multi-Species Tropical Forest Dynamics Using a Vertically and Horizontally Structured Model’, For. Ecol. Manage. 69, 123–144.

    Google Scholar 

  • Botkin, D. B.: 1993, Forest Dynamics: An Ecological Model, Oxford University Press, Oxford and New York, p. 309.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R.: 1970, A Simulator for Northeastern Forest Growth, Research Report 3140, IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R.: 1972a, ‘Rationale, Limitations and Assumptions of a Northeastern Forest Growth Simulator’, IBM J. Res. Develop. 16, 101–116.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R.: 1972b, ‘Some Ecological Consequences of a Computer Model of Forest Growth’, J. Ecol. 60, 849–872.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R.: 1973, ‘Estimating the Effects of Carbon Fertilization on Forest Composition by Ecosystem Simulation’, in Woodwell, G. M. and Pecan, E. V. (eds.), Carbon and the Biosphere, U.S. Department of Commerce, Washington D.C., pp. 328–344.

    Google Scholar 

  • Bugmann, H.: 1994, On the Ecology of Mountainous Forests in a Changing Climate: A Simulation Study, Ph.D. Thesis No. 10638, Swiss Federal Institute of Technology Zurich, Switzerland, p. 258.

    Google Scholar 

  • Bugmann, H.: 1996, ‘A Simplified Forest Model to Study Species Composition along Climate Gradients’, Ecology 77, 2055–2074.

    Google Scholar 

  • Bugmann, H.: 1999, ‘Anthropogene Klimaveränderung, Sukzessionsprozesse und forstwirtschaftliche Optionen’, Schweiz. Z. Forstwesen 150, 275–287.

    Google Scholar 

  • Bugmann, H. and Martin, P.: 1995, ‘How Physics and Biology Matter in Forest Gap Models’, Clim. Change 29, 251–257.

    Google Scholar 

  • Bugmann, H. and Cramer, W.: 1998, ‘Improving the Behaviour of Forest Gap Models along Drought Gradients’, For. Ecol. Manage. 103, 247–263.

    Google Scholar 

  • Bugmann, H. K. M. and Solomon, A. M.: 2000, ‘Explaining Forest Biomass and Species Composition across Multiple Biogeographical Regions’, Ecol. Appl. 10, 95–114.

    Google Scholar 

  • Bugmann, H. and Pfister, Ch.: 2000, ‘Impacts of Interannual Climate Variability on Past and Future Forest Composition’, Regional Environ. Change 1, 112–125.

    Google Scholar 

  • Bugmann, H. K. M., Yan Xiaodong, Sykes, M. T., Martin, Ph., Lindner, M., Desanker, P. V., and Cumming, S. G.: 1996, ‘A Comparison of Forest Gap Models: Model Structure and Behaviour’, Clim. Change 34, 289–313.

    Google Scholar 

  • Bugmann, H., Grote, R., Lasch, P., Lindner, M., and Suckow, F.: 1997, ‘A New Forest Gap Model to Study the Effects of Environmental Change on Forest Structure and Functioning’, in Mohren, G. M. J., Kramer, K., and Sabaté, S. (eds.), Global Change Impacts on Tree Physiology and Forest Ecosystems, Kluwer Academic Publishers, pp. 255–261.

  • Bugmann, H., Lindner, M., Lasch, P., Flechsig, M., Ebert, B., and Cramer, W.: 2000, ‘Scaling Issues in Forest Succession Modelling’, Clim. Change 44, 265–289.

    Google Scholar 

  • Bugmann, H. K. M., Wullschleger, S. D., Price, D. T., Ogle, K., Clark, D. F., and Solomon, A. M.: 2001, ‘Comparing the Performance of Forest Gap Models in North America’, Clim. Change 51, 349–388.

    Google Scholar 

  • Busing, R. T.: 1998, ‘Composition, Structure and Diversity of Cove Forest Stands in the Great Smoky Mountains: A Patch Dynamics Perspective’, J. Veg. Sci. 9, 881–890.

    Google Scholar 

  • Clark, J. S. and Ji, Y.: 1995, ‘Fecundity and Dispersal in Plant-Populations – Implications for Structure and Diversity’, Amer. Nat. 146, 72–111.

    Google Scholar 

  • Clements, F. E.: 1916, Plant Succession: An Analysis of the Development of Vegetation, Carnegie Inst. Pub., Washington, D.C., 242, p. 512.

    Google Scholar 

  • Coffin, D. P. and Lauenroth, W. K.: 1990, ‘A Gap Dynamics Simulation Model of Succession in a Semiarid Grassland’, Ecol. Modelling 49, 229–236.

    Google Scholar 

  • Cramer, W., Shugart, H. H., Noble, I. R., Woodward, F. I., Bugmann, H., Bondeau, A., Foley, J. A., Gardner, R. H., Lauenroth, W. K., Pitelka, L. F., Sala, O. E., and Sutherst, R. W.: 1999, ‘Ecosystem Composition and Structure’, in Walker, B. H., Steffen, W. L., Canadell, J., and Ingram, J. S. I. (eds.), Global Change and the Terrestrial Biosphere: Implications for Natural and Managed Ecosystems. A Synthesis of GCTE and Related Research, IGBP Book Series No. 4, Cambridge University Press, Cambridge, pp. 190–228.

    Google Scholar 

  • Dale, V. H. and Hemstrøm, M.: 1984, CLIMACS: A Computer Model of Forest Stand Development for Western Oregon and Washington, Res. Paper PNW-327, Pacific Forest and Range Experiment Station, U.S. Department of Agriculture, Forest Service, p. 60.

  • Dale, V. H., Doyle, T. W., and Shugart, H. H.: 1985, ‘A Comparison of Tree Growth Models’, Ecol. Modelling 29, 145–169.

    Google Scholar 

  • Davis, M. B.: 1989, ‘Lags in Vegetation Response to Greenhouse Warming’, Clim. Change 15, 75–82.

    Google Scholar 

  • Davis, M. B. and Botkin, D. B.: 1985, ‘Sensitivity of Cool-Temperate Forests and their Fossil Pollen Record to Rapid Temperature Change’, Quat. Res. 23, 327–340.

    Google Scholar 

  • Desanker, P. V.: 1996, ‘Development of a Miombo Woodland Dynamics Model in Zambezian Africa Using Malawi as a Case Study’, Clim. Change 34, 279–288.

    Google Scholar 

  • Doyle, T. W.: 1981, ‘The Role of Disturbance in the Gap Dynamics of a Montane Rain Forest: An Application of a Tropical Forest Succession Model’, in West, D. C., Shugart, H. H., and Botkin, D. B. (eds.), Forest Succession: Concepts and Application, Springer, New York a.o., pp. 56–73.

    Google Scholar 

  • Ellenberg, H.: 1986, Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, Verlag Eugen Ulmer, Stuttgart, 4th edn, p. 989.

    Google Scholar 

  • Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: 1980, ‘A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species’, Planta 149, 78–90.

    Google Scholar 

  • Fischlin, A., Bugmann, H., and Gyalistras, D.: 1995, ‘Sensitivity of a Forest Ecosystem Model to Climate Parametrization Schemes’, Environ. Pollut. 87, 267–282.

    Google Scholar 

  • Frelich, L. E. and Lorimer, C. G.: 1991, ‘Natural Disturbance Regimes in Hemlock-Hardwood Forests of the Upper Great Lakes Region’, Ecol. Monogr. 61, 145–164.

    Google Scholar 

  • Friend, A. D., Shugart, H. H., and Running, S. W.: 1993, ‘A Physiology-Based Gap Model of Forest Dynamics’, Ecology 74, 792–797.

    Google Scholar 

  • Friend, A. D., Stevens, A. K., Knox, R. G., and Cannell, M. G. R.: 1997, ‘A Process-Based, Terrestrial Biosphere Model of Ecosystem Dynamics (HYBRID v3.0)’, Ecol. Modelling 95, 249–287.

    Google Scholar 

  • Fulton, M.: 1991, ‘A Computationally Efficient Forest Succession Model: Design and Initial Tests’, For. Ecol. Manage. 42, 23–34.

    Google Scholar 

  • Fulton, M. R.: 1993, ‘Rapid Simulations of Vegetation Stand Dynamics with Mixed Life-Forms’, in Solomon, A. M. and Shugart, H. H. (eds.), Vegetation Dynamics and Global Change, Chapman and Hall, New York a.o., pp. 251–271.

    Google Scholar 

  • Gignoux, J., Noble, I., and Menaut, J. C.: 1995, ‘Modelling Tree Community Dynamics in Savannas: Effects of Competition with Grasses and Impact of Disturbance’, in Bellan-Santini, D., Bonin, G., and Emig, C. (eds.), Functioning and Dynamics of Natural and Perturbed Ecosystems, Lavoisier Publishing, Paris, pp. 219–230.

    Google Scholar 

  • Gleason, H. A.: 1926, ‘The Individualistic Concept of the Plant Association’, Bull. Torrey Bot. Club 53, 7–26.

    Google Scholar 

  • Goff, F. G. and West, D.: 1975, ‘Canopy-Understory Interaction Effects on Forest Population Structure’, Forest Sci. 21, 98–108.

    Google Scholar 

  • Harcombe, P. A.: 1987, ‘Tree Life Tables’, Bioscience 37, 557–568.

    Google Scholar 

  • Haxeltine, A. and Prentice, I. C.: 1996, ‘A General Model for the Light Use Efficiency of Primary Production by Terrestrial Ecosystems’, Func. Ecol. 10, 551–561.

    Google Scholar 

  • Horn, H. S.: 1971, The Adaptive Geometry of Trees, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Humphries, H. C., Coffin, D. P., and Lauenroth, W. K.: 1996, ‘An Individual-Based Model of Alpine Plant Distributions’, Ecol. Modelling 84, 99–126.

    Google Scholar 

  • Hurtt, G. C., Moorcroft, P. R., Pacala, S. W., and Levin, S. A.: 1998, ‘Terrestrial Models and Global Change: Challenges for the Future’, Global Change Biol. 4, 581–590.

    Google Scholar 

  • Huth, A., Ditzer, T., and Bossel, H.: 1998, The Rain Forest Growth Model FORMIX3 – Model Description and Analysis of Forest Growth and Logging Scenarios for the Deramakot Forest Reserve (Malaysia), Erich Goltze Publishers, Göttingen.

    Google Scholar 

  • Jorritsma, I. T.M., van Hees, A. F.M., and Mohren, G. M. J.: 1999, ‘Forest Development in Relation to Ungulate Grazing: A Modeling Approach’, For. Ecol. Manage. 120, 23–34.

    Google Scholar 

  • Keane, R. E., Arno, S. F., Brown, J. K., and Tomback, D. F.: 1990, ‘Modelling Stand Dynamics in Whitebark Pine (Pinus albicaulis) Forests’, Ecol. Modelling 51, 73–95.

    Google Scholar 

  • Keane, R. E., Morgan, P., and Running, S.W.: 1996, FIRE-BGC – A Mechanistic Ecological Process Model for Simulating Fire Succession on Coniferous Forest Landscapes of the Northern Rocky Mountains, USDA Forest Service Research Paper INT-RP-484, p. 122.

  • Keane, R. E., Hardy, C. C., Ryan, K. C., and Finney, M. A.: 1997, ‘Simulating Effects of Fire on Gaseous Emissions and Atmospheric Carbon Fluxes from Coniferous Forest Landscapes’, World Resource Rev. 9, 177–205.

    Google Scholar 

  • Keane, R. E., Austin, M., Dahlman, R., Field, C., Huth, A., Lexer, M. J., Peters, D., Solomon, A., and Wyckoff, P.: 2001, ‘Tree Mortality in Gap Models: Application to Climate Change’, Clim. Change 51, 509–540.

    Google Scholar 

  • Kellomäki, S., Väisänen, H., Hänninen, H., Kolström, T., Lauhanen, R., Mattila, U., and Pajari, B.: 1992, ‘SIMA: A Model for Forest Succession Based on the Carbon and Nitrogen Cycles with Application to Silvicultural Management of the Forest Ecosystem’, Silva Carelica 22, 91.

    Google Scholar 

  • Ker, J. W. and Smith, J. H. G.: 1955, ‘Advantages of the Parabolic Expression of Height-Diameter Relationships’, For. Chron. 31, 235–246.

    Google Scholar 

  • Kercher, J. R. and Axelrod, M. C.: 1984, ‘A Process Model of Fire Ecology and Succession in a Mixed-Conifer Forest’, Ecology 65, 1725–1742.

    Google Scholar 

  • Kienast, F.: 1987, FORECE – A Forest Succession Model for Southern Central Europe, Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/TM-10575, p. 69.

    Google Scholar 

  • Kienast, F.: 1991, ‘Simulated Effects of Increasing CO2 on the Successional Characteristics of Alpine Forest Ecosystems’, Landscape Ecol. 5, 225–238.

    Google Scholar 

  • Kienast, F., Fritschi, J., Bissegger, M., and Abderhalden, W.: 1999, ‘Modelling Successional Patterns of High-Elevation Forests under Changing Herbivore Pressure – Responses at the Landscape Level’, For. Ecol. Manage. 120, 35–46.

    Google Scholar 

  • Körner, C.: 1996, ‘The Response of Complex Multispecies Systems to Elevated CO2’, in Walker, B. and Steffen, W. (eds.), Global Change and Terrestrial Ecosystems, Cambridge University Press, Cambridge, pp. 20–42.

    Google Scholar 

  • Kohyama, T.: 1993, ‘Size-Structured Tree Populations in Gap-Dynamic Forest – the Forest Architecture Hypothesis for the Stable Coexistence of Species’, J. Ecol. 81, 131–143.

    Google Scholar 

  • Kohyama, T.: 1994, ‘Size-Structure-Based Models of Forest Dynamics to Interpret Population-and Community-Level Mechanisms’, J. Plant Res. 107, 107–116.

    Google Scholar 

  • Kohyama, T. and Shigesada, N.: 1995, ‘A Size-Distribution-Based Model of Forest Dynamics along a Latitudinal Environmental Gradient’, Vegetatio 121, 117–126.

    Google Scholar 

  • Korol, R. L., Running, S. W., and Milner, K. S.: 1995, ‘Incorporating Intertree Competition into an Ecosystem Model’, Can. J. Forest Res. 25, 413–424.

    Google Scholar 

  • Korzukhin, M. D., Rubinina, A. E., Bonan, G. B., Solomon, A. M., and Antonovsky, M. Y.: 1989, The Silvics of Some East European and Siberian Boreal Forest Tree Species,WP-89-56, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Küchler, A. W.: 1975, Potential Natural Vegetation of the Conterminous United States 1:3,168,000, Amer. Geogr. Soc. Spec. Publ. No. 36.

  • Larcher, W.: 1995, Physiological Plant Ecology, Springer, Berlin a.o., 3rd edn, p. 506.

    Google Scholar 

  • Leemans, R.: 1992, ‘The Biological Component of the Simulation Model for Boreal Forest Dynamics’, in Shugart, H. H., Leemans, R., and Bonan, G. B. (eds.), A Systems Analysis of the Global Boreal Forest, Cambridge Univ. Press, Cambridge a.o., pp. 428–445.

    Google Scholar 

  • Leemans, R. and Prentice, I. C.: 1989, FORSKA, a General Forest Succession Model, Institute of Ecological Botany, Uppsala, p. 70.

    Google Scholar 

  • Lemée, G.: 1987, ‘Dynamique de fermeture par régénération et évolution morphométrique du hêtre dans les vides d'une forêt non exploitée (Réserves biologiques de la fôret de Fontainebleau)’, Bull. Ecol. 18, 1–11.

    Google Scholar 

  • Lertzman, K. P. and Krebs, C. J.: 1991, ‘Gap-Phase Structure of a Subalpine Old-Growth Forest’, Can. J. Forest Res. 21, 1730–1741.

    Google Scholar 

  • Lertzman, K. P., Sutherland, G. D., Inselberg, A., and Saunders, S. C.: 1996, ‘Canopy Gaps and the Landscape Mosaic in a Coastal Temperate Rain Forest’, Ecology 77, 1254–1270.

    Google Scholar 

  • Lexer, M. J. and Hönninger, K.: 1998a, ‘Simulated Effects of Bark Beetle Infestations on Stand Dynamics in Picea abies Stands: Coupling a Patch Model and a Stand Risk Model’, in Beniston, M. and Innes, J. L. (eds.), The Impacts of Climate Variability on Forests, Lecture Notes in Earth Sciences Vol. 74, Springer-Verlag, Berlin a.o., pp. 289–308.

    Google Scholar 

  • Lexer, M. J. and Hönninger, K.: 1998b, Computergestützte Simulation der Waldentwicklung, Report, Institut für Waldbau, Universität für Bodenkultur Wien, p. 176.

  • Lindner, M., Lasch, P., and Cramer, W.: 1996, ‘Application of a Forest Succession Model to a Continentality Gradient through Central Europe’, Clim. Change 34, 179–190.

    Google Scholar 

  • Lindner, M., Sievänen, R., and Pretzsch, H.: 1997, ‘Improving the Simulation of Stand Structure in a Forest Gap Model through a Flexible Height Growth Function’, For. Ecol. Manage. 95, 183–195.

    Google Scholar 

  • Lischke, H., Löffler, T. J., and Fischlin, A.: 1998, ‘Aggregation of Individual Trees and Patches in Forest Succession Models – Capturing Variability with Height Structured Random Dispersions’, Theor. Popul. Biol. 54, 213–226.

    Google Scholar 

  • Lischke, H., Guisan, A., Fischlin, A., Williams, J., and Bugmann, H.: 1998, ‘Vegetation Responses to Climate Change in the Alps: Modeling Studies’, in Cebon, P., Dahinden, U., Davies, H., Imboden, D., and Jäger, C. (eds.), A View from the Alps: Regional Perspectives on Climate Change, MIT Press, Cambridge, Massachusetts, pp. 309–350.

    Google Scholar 

  • Liu, J. and Ashton, P. S.: 1995, ‘Individual-Based Simulation Models for Forest Succession and Management’, For. Ecol. Manage. 73, 157–175.

    Google Scholar 

  • Löffler, T. J. and Lischke, H.: 2001, ‘Incorporation and Influence of Variability in an Aggregated Forest Model’, Natural Resource Modeling 14, 103–137.

    Google Scholar 

  • Loehle, C. and LeBlanc, D.: 1996, ‘Model-Based Assessments of Climate Change Effects on Forests: A Critical Review’, Ecol. Modelling 90, 1–31.

    Google Scholar 

  • Lotter, A. and Kienast, F.: 1992, ‘Validation of a Forest Succession Model by Means of Annually Laminated Sediments’, in Saarnisto, M. and Kahra, A. (eds.), Proceedings of the INQUA Workshop on Laminated Sediments, June 4–6, 1990, Lammi, Finland, Geological Survey of Finland, Special Paper Series, 14, pp. 25–31.

  • Mäkelä, A.: 1986, ‘Implications of the Pipe Model Theory on Dry Matter Partitioning and Height Growth in Trees’, J. Theor. Biol. 123, 103–120.

    Google Scholar 

  • Mäkelä, A.: 1990, ‘Modeling Structural-Functional Relationships in Whole-Tree Growth: Resource Allocation’, in Dixon, R. K., Meldahl, R. S., Ruark, G. A., and Warren, W. G. (eds.), Process Modeling of Forest Growth Responses to Environmental Stress, Timber Press, Portland, Oregon, pp. 81–95.

    Google Scholar 

  • Mäkelä, A., Sievänen, R., Lindner, M., and Lasch, P.: 2000, ‘Application of Volume Growth and Survival Graphs in the Evaluation of Four Process-Based Forest Growth Models’, Tree Physiol. 20, 347–355.

    Google Scholar 

  • Meentemeyer, V.: 1978, ‘Macroclimate and Lignin Control of Litter Decomposition Rates’, Ecology 59, 465–472.

    Google Scholar 

  • Miller, C. and Urban, D. L.: 1999, ‘Forest Pattern, Fire, and Climatic Change in the Sierra Nevada’, Ecosystems 2, 76–87.

    Google Scholar 

  • Mooney, H. A., Canadell, J., Chapin, F. S. III, Ehleringer, J. R., Körner, Ch., McMurtrie, R. E., Parton, W. J., Pitelka, L. F., and Shulze, E.-D.: 1999, ‘Ecosystem Physiology Responses to Global Change’, in Walker, B. H., Steffen, W. L., Canadell, J., and Ingram, J. S. I. (eds.), Global Change and the Terrestrial Biosphere: Implications for Natural and Managed Ecosystems. A Synthesis of GCTE and Related Research, IGBP Book Series No. 4, Cambridge University Press, Cambridge, pp. 141–189.

    Google Scholar 

  • Moore, A. D.: 1989, ‘On the Maximum Growth Equation Used in Forest Gap Simulation Models’, Ecol. Modelling 45, 63–67.

    Google Scholar 

  • Munro, D. D.: 1974, ‘Forest Growth Models: A Prognosis’, in Fries, J. (ed.), Growth Models for Tree and Stand Simulation, Dept. of Forest Yield Research, Royal College of Forestry, Stockholm Res. Notes Vol. 30.

    Google Scholar 

  • Newnham, R. M.: 1964, The Development of a Stand Model for Douglas-Fir, Ph.D. Thesis, Faculty of Forestry, University of British Columbia, Vancouver, p. 201.

    Google Scholar 

  • Norby, R. J., Ogle, K., Curtis, P. S., Badeck, F.-W., Huth, A., Hurtt, G. C., Kohyama, T., and Peñuelas, J.: 2001, ‘Aboveground Growth and Competition in Forest Patch Models: An Analysis for Studies of Climatic Change’, Clim. Change 51, 415–447.

    Google Scholar 

  • Oreskes, N., Shrader-Frechette, K., and Belitz, K.: 1994, ‘Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences’, Science 263, 641–646.

    Google Scholar 

  • Pacala, S.W. and Hurtt, G. C.: 1993, ‘Terrestrial Vegetation and Climate Change: Integrating Models and Experiments’, in Kareiva, P.M., Kingsolver, J. G., and Huey, R. B. (eds.), Biotic Interactions and Global Change, Sinauer Associates, Sunderland MA, pp. 57–74.

    Google Scholar 

  • Pacala, S. W., Canham, C. D., and Silander Jr., J. A.: 1993, ‘Forest Models Defined by Field Measurements: I. The Design of a Northeastern Forest Simulator’, Can. J. Forest Res. 23, 1980–1988.

    Google Scholar 

  • Pacala, S. W., Canham, C. D., Saponara, J., Silander, J. A., Kobe, R. K., and Ribbens, E.: 1996, ‘Forest Models Defined by Field Measurements: Estimation, Error Analysis and Dynamics’, Ecol. Monogr. 66, 1–43.

    Google Scholar 

  • Pastor, J. and Post, W. M.: 1985, Development of a Linked Forest Productivity-Soil Process Model, U.S. Dept. of Energy, ORNL/TM-9519.

  • Pastor, J. and Post, W. M.: 1988, ‘Response of Northern Forests to CO2-Induced Climate Change’, Nature 334, 55–58.

    Google Scholar 

  • Pedersen, B. S.: 1998, ‘The Role of Stress in the Mortality of Midwestern Oaks as Indicated by Growth Prior to Death’, Ecology 79, 79–93.

    Google Scholar 

  • Pedersen, B. S.: 1999, ‘The Mortality of Midwestern Overstory Oaks as a Bioindicator of Environmental Stress’, Ecol. Appl. 9, 1017–1027.

    Google Scholar 

  • Pickett, S. T. A. and White, P. S.: 1985, The Ecology of Natural Disturbance and Patch Dynamics, Academic Press, Orlando a.o., p. 472.

    Google Scholar 

  • Prentice, I. C., Sykes, M. T., and Cramer, W.: 1993, ‘A Simulation Model for the Transient Effects of Climate Change on Forest Landscapes’, Ecol. Modelling 65, 51–70.

    Google Scholar 

  • Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: 1992, ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’, J. Biogeogr. 19, 117–134.

    Google Scholar 

  • Price, D. T. and Apps, M. J.: 1995, ‘The Boreal Forest Transect Case Study: Global Change Effects on Ecosystem Processes and Carbon Dynamics in Boreal Canada’, Water Air Soil Pollut. 82, 203–214.

    Google Scholar 

  • Price, D. T. and Apps, M. J.: 1996, ‘Boreal Forest Responses to Climate-Change Scenarios along an Ecoclimatic Transect in Central Canada’, Clim. Change 34, 179–190.

    Google Scholar 

  • Price, D. T., Zimmermann, N. E., van der Meer, P. J., Lexer, M. J., Leadley, P., Jorritsma, I. T. M., Schaber, J., Clark, D. F., Lasch, P., McNulty, S., Wu, J., and Smith, B.: 2001, ‘Regeneration in Gap Models: Priority Issues for Studying Forest Response to Climate Change’, Clim. Change 51, 475–508.

    Google Scholar 

  • Reynolds, J. F., Acock, B., and Whitney, R.: 1993, ‘Linking CO2 Experiments and Modeling’, in Schulze, E.-D. and Mooney, H. A. (eds.), Design and Execution of Experiments on CO 2 Enrichment, Report No. 6, Ecosystems Research Series of Environmental Research Programme, Commission of the European Communities, Brussels, pp. 93–106.

    Google Scholar 

  • Schenk, H. J.: 1996, ‘Modeling the Effects of Temperature on Growth and Persistence of Tree Species: A Critical Review of Tree Population Models’, Ecol. Modelling 92, 1–32.

    Google Scholar 

  • Schulze, E.-D., Fuchs, M., and Fuchs, M. I.: 1977, ‘Spatial Distribution of Photosynthetic Capacity and Performance in a Mountain Spruce Forest of Northern Germany. I. Biomass Distribution and Daily CO2 Uptake in Different Crown Layers’, Oecologia 29, 43–61.

    Google Scholar 

  • Shao, G., Schall, P., and Weishampel, J. F.: 1994, ‘Dynamic Simulations of Mixed Broadleaved Pinus koraiensis Forests in the Changbaishan Biosphere Reserve of China’, For. Ecol. Manage. 70, 169–181.

    Google Scholar 

  • Shao, G., Shugart, H. H., and Smith, T. M.: 1995, ‘A Role-Type Model (Rope) and its Application in Assessing Climate Change Impacts on Forest Landscapes’, Vegetatio 121, 135–146.

    Google Scholar 

  • Shao, G., Bugmann, H., and Yan, X.: 2001, ‘A Comparative Analysis of the Structure and Behavior of Three Gap Models at Sites in Northeastern China’, Clim. Change 51, 389–413.

    Google Scholar 

  • Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T.: 1964, ‘A Quantitative Analysis of Plant Form – the Pipe Model Theory. I. Basic Analyses’, Jap. J. Ecol. 14, 97–105.

    Google Scholar 

  • Shugart, H. H.: 1984, A Theory of Forest Dynamics. The Ecological Implications of Forest Succession Models, Springer, New York a.o., p. 278.

    Google Scholar 

  • Shugart, H. H.: 1998, Terrestrial Ecosystems in Changing Environments, Cambridge Studies in Ecology, Cambridge University Press, Cambridge, p. 537.

    Google Scholar 

  • Shugart, H. H. and West, D. C.: 1977, ‘Development of an Appalachian Deciduous Forest Succession Model and its Application to Assessment of the Impact of the Chestnut Blight’, J. Environ. Manage. 5, 161–179.

    Google Scholar 

  • Shugart, H. H. and West, D. C.: 1979, ‘Size and Pattern of Simulated Forest Stands’, Forest Sci. 25, 120–122.

    Google Scholar 

  • Shugart, H. H. and West, D. C.: 1980, ‘Forest Succession Models’, Bioscience 30, 308–313.

    Google Scholar 

  • Shugart, H. H. and Noble, I. R.: 1981, ‘A Computer Model of Succession and Fire Response of the High-Altitude Eucalyptus Forest of the Brindabella Range, Australian Capital Territory’, Aust. J. Ecol. 6, 149–164.

    Google Scholar 

  • Shugart, H. H. and Emanuel, W. R.: 1985, ‘Carbon Dioxide Increase: The Implications at the Ecosystem Level’, Plant Cell Environ. 8, 381–386.

    Google Scholar 

  • Shugart, H. H. and Smith, T. M.: 1996, ‘A Review of Forest Patch Models and their Application to Global Change Research’, Clim. Change 34, 131–153.

    Google Scholar 

  • Siccama, T. G., Botkin, D. B., Bormann, F. H., and Likens, G. E.: 1969, ‘Computer Simulation of a Northern Hardwood Forest’, Bull. Ecol. Soc. Amer. 50, 93.

    Google Scholar 

  • Smith, T. M. (ed.): 1996, ‘The Application of Patch Models of Vegetation Dynamics to Global Change Issues’, Clim. Change 34, 131–313.

    Google Scholar 

  • Solomon, A. M.: 1986, ‘Transient Response of Forests to CO2-Induced Climate Change: Simulation Modeling Experiments in Eastern North America’, Oecologia 68, 567–579.

    Google Scholar 

  • Solomon, A. M. and Webb, T.: 1985, ‘Computer-Aided Reconstruction of Late-Quaternary Landscape Dynamics’, Ann. Rev. Ecol. Syst. 16, 63–84.

    Google Scholar 

  • Solomon, A. M., Delcourt, H. R., West, D. C., and Blasing, T. J.: 1980, ‘Testing a Simulation Model for Reconstruction of Prehistoric Forest-Stand Dynamics’, Quat. Res. 14, 275–293.

    Google Scholar 

  • Szwagrzyk, J.: 1992, ‘Small-Scale Spatial Patterns of Trees in a Mixed Pinus sylvestris-Fagus silvatica Forest’, For. Ecol. Manage. 51, 301–315.

    Google Scholar 

  • Talkkari, A., Kellomäki, S., and Peltola, H.: 1999, ‘Bridging a Gap between a Gap Model and a Physiological Model for Calculating the Effect of Temperature on Forest Growth under Boreal Conditions’, For. Ecol. Manage. 119, 137–150.

    Google Scholar 

  • Tansley, A. G.: 1935, ‘The Use and Abuse of Vegetational Concepts and Terms’, Ecology 16, 284–307.

    Google Scholar 

  • Thornthwaite, C. W. and Mather, J. R.: 1957, ‘Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance’, Publ. Climatol. 10, 183–311.

    Google Scholar 

  • Urban, D. L.: 1990, A Versatile Model to Simulate Forest Pattern: A User's Guide to Zelig 1.0, Univ. of Virginia, Dept. of Environmental Sciences, Charlottesville, Virginia, p. 108.

    Google Scholar 

  • Urban, D. L. and Shugart, H. H.: 1992, ‘Individual-Based Models of Forest Succession’, in Glenn-Lewin, D. C., Peet, R. K., and Veblen, T. T. (eds.), Plant Succession: Theory and Prediction, Chapman and Hall, London a.o., pp. 249–292.

    Google Scholar 

  • Urban, D. L., Acevedo, M. F., and Garman, S. L.: 1999, ‘Scaling Fine-Scale Processes to Large-Scale Patterns Using Models Derived from Models: Meta-Models’, in Mladenoff, D. J. and Baker, W. L. (eds.), Spatial Modeling of Forest Landscape Change, Cambridge University Press, Cambridge, pp. 70–98.

    Google Scholar 

  • Urban, D. L., Bonan, G. B., Smith, T. M., and Shugart, H. H.: 1991, ‘Spatial Applications of Gap Models’, For. Ecol. Manage. 42, 95–110.

    Google Scholar 

  • Villalba, R. and Veblen, T. T.: 1998, ‘Influences of Large-Scale Climatic Variability on Episodic Tree Mortality in Northern Patagonia’, Ecology 79, 2624–2640.

    Google Scholar 

  • Waring, R. H.: 1987, ‘Characteristics of Trees Predisposed to Die’, Bioscience 37, 569–574.

    Google Scholar 

  • Waring, R. H. and Schlesinger, W. H.: 1985, Forest Ecosystems: Concepts and Management, Academic Press, London a.o., p. 340.

    Google Scholar 

  • Waring, R. H. and Running, S. W.: 1998, Forest Ecosystems: Analysis at Multiple Scales, Academic Press, San Diego a.o., p. 370.

    Google Scholar 

  • Watt, A. S.: 1925, ‘On the Ecology of British Beechwoods with Special Reference to their Regeneration’, J. Ecol. 13, 27–73.

    Google Scholar 

  • Weishampel, J. F. and Urban, D. L.: 1996, ‘Coupling a Spatially-Explicit Forest Gap Model with a 3-D Solar Routine to Simulate Latitudinal Effects’, Ecol. Modelling 86, 101–111.

    Google Scholar 

  • Whittaker, R. H.: 1953, ‘A Consideration of Climax Theory: The Climax as a Population and Pattern’, Ecol. Monogr. 23, 41–78.

    Google Scholar 

  • Wullschleger, S. D., Jackson, R. B., Currie, W. S., Friend, A. D., Luo, Y., Mouillot, F., Pan, Y., and Shao, G.: 2001, ‘Below-Ground Processes in Gap Models for Simulating Forest Response to Global Change’, Clim. Change 51, 449–473.

    Google Scholar 

  • Yan, X. and Zhao, S.: 1995, ‘Simulating the Carbon Storage Dynamics of Temperate Broad-Leaved Coniferous Mixed Forest Ecosystems: I. Dynamics of the Tree Layer of Broad-Leaved Korean Pine Forests in Changbai Mountain’, Chinese J. Ecol. 14, 6–12.

    Google Scholar 

  • Yaussy, D. A., 2000, ‘Comparison of an Empirical Forest Growth and Yield Simulator and a Forest Gap Simulator Using Actual 30-Year Growth from Two Even-Aged Forests in Kentucky’, For. Ecol. Manage. 126, 385–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugmann, H. A Review of Forest Gap Models. Climatic Change 51, 259–305 (2001). https://doi.org/10.1023/A:1012525626267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012525626267

Keywords

Navigation