Skip to main content
Log in

Photogeneration of Silver Particles in PVA Fibers and Films

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Fibers and films prepared from blends of poly(vinyl alcohol) and poly(acrylic acid) were found to be suitable matrices for the solid-state photoreduction of silver ions in the presence of air. Fast generation of nanometer-sized silver crystallites was observed when fibers of polymer blends crosslinked with dimethyl sulfoxide were irradiated with 350 nm light. Optical determinations of the formation kinetics were carried out using thin films of noncrosslinked as well as lightly and heavily crosslinked polymer blends. Small Ag clusters were detected initially, which were stable in the dark but transformed into larger metal particles upon further illumination. Both formation processes occurred only under high light intensity illumination and the kinetic data were inconsistent with monophotonic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. W. P. Halperin (1986). Rev. Mod. Phys. 58, 533.

    Google Scholar 

  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Verlag, Berlin, 1995).

    Google Scholar 

  3. S. Link and M. A. El-Sayed (1999). J. Phys. Chem. B 103, 8410.

    Google Scholar 

  4. G. Schmid (1992). Chem. Rev. 92, 1709.

    Google Scholar 

  5. W. Li, J. A. Virtanen, and R. M. Penner (1995). Langmuir 11, 4361.

    Google Scholar 

  6. T. Pal, T. K. Sau and N. R. Jana (1997). Langmuir 13, 1481.

    Google Scholar 

  7. J. Belloni, in M. Chanon, (ed.) Homogeneous Photocatalysis (John Wiley, New York, 1997), p. 169.

    Google Scholar 

  8. A. V. Dotsenko, L. B. Glebov, and V. A. Tsekhomsky, Physics and Chemistry of Photochromic Glasses (CRC Press, Boca Raton, FL, 1998).

    Google Scholar 

  9. R. G. Araujo and N. F. Borrelli, in R. Uhlmann and N. J. Kreidl (eds.), Optical Properties of Glasses (American Ceramic Society, Westerville, Ohio, 1991), p. 125.

    Google Scholar 

  10. S. Weaver, D. Taylor, W. Gale, and G. Mills (1996). Langmuir 12, 4618.

    Google Scholar 

  11. Z.-Y. Huang, G. Mills, and B. Hajek (1993). J. Phys. Chem. 87, 11542.

    Google Scholar 

  12. T. Takahashi, K. Suzuki, T. Aoki, and K. Sakurai (1991). J. Macromol. Sci. Phys. B 30, 101.

    Google Scholar 

  13. H. G. Heller and J. R. Langan (1981). J. Chem. Soc. Perkin Trans. 2, 341.

    Google Scholar 

  14. J. G. Pritchard, Poly(vinyl alcohol)-Basic Properties and Uses (Gordon and Breach Science Publishers, London, 1970), p. 28.

    Google Scholar 

  15. J. Belloni (1998). Radiat. Res. 150 (Suppl.), S9.

    Google Scholar 

  16. J. Michalik, J. Sadlo, T. Kodaira, S. Shimomura, and H. Yamada (1998). J. Radioanal. Nucl. Chem. 232, 135.

    Google Scholar 

  17. T. H. James, The Theory of the Photographic Process, 4th ed. (MacMillan Publishing Co., New York, 1977), p. 269.

    Google Scholar 

  18. K. Malone, Ph.D. dissertation, Auburn University, 2000.

  19. H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake (1976). J. Phys. Chem. 80, 2728.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaddy, G.A., McLain, J.L., Steigerwalt, E.S. et al. Photogeneration of Silver Particles in PVA Fibers and Films. Journal of Cluster Science 12, 457–471 (2001). https://doi.org/10.1023/A:1012827413518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012827413518

Navigation