Skip to main content
Log in

Review of Graph Comprehension Research: Implications for Instruction

  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

Graphs are commonly used in textbooks and educational software, and can help students understand science and social science data. However, students sometimes have difficulty comprehending information depicted in graphs. What makes a graph better or worse at communicating relevant quantitative information? How can students learn to interpret graphs more effectively? This article reviews the cognitive literature on how viewers comprehend graphs and the factors that influence viewers' interpretations. Three major factors are considered: the visual characteristics of a graph (e.g., format, animation, color, use of legend, size, etc.), a viewer's knowledge about graphs, and a viewer's knowledge and expectations about the content of the data in a graph. This article provides a set of guidelines for the presentation of graphs to students and considers the implications of graph comprehension research for the teaching of graphical literacy skills. Finally, this article discusses unresolved questions and directions for future research relevant to data presentation and the teaching of graphical literacy skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Armento, B. J., Nash, G. B., Salter, C. L., and Wixson, K. K. (1991). A More Perfect Union, Houghton Mifflin, Boston.

    Google Scholar 

  • Becker, R. A., Cleveland, W. S., and Wilks, A. R. (1988). Dynamic graphics for data analysis. In Cleveland, W. S., and McGill, M. E. (eds.), Dynamic Graphics for Statistics, Wadsworth, Belmont, CA, pp. 1-.

    Google Scholar 

  • Bell, A., and Janvier, C. (1981). The interpretation of graphs representing situations. Learn. Math. 2: 34–42.

    Google Scholar 

  • Bertin, J. (1983). In Berg, W. (trans.), Semiology of Graphics: Diagrams Networks Maps, The University ofWisconsin Press, Madison, WI.

    Google Scholar 

  • Brockmann, R. J. (1991). The unbearable distraction of color. IEEE Trans. Profession. Commun. 34: 153–159.

    Google Scholar 

  • Bryant, P. E., and Somerville, S. C. (1986). The spatial demands of graphs. Br. J. Psychol. 77: 187–197.

    Google Scholar 

  • Carmichael, L. C., Hogan, H. P., and Walters, A. A. (1932). An experimental study of the effect of language on the reproduction of visually perceived form. J. Exp. Psychol. 15: 73–86.

    Google Scholar 

  • Carpenter, P. A., and Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. J. Exp. Psychol. Appl. 4: 75–100.

    Google Scholar 

  • Carswell, C. M., Emery, C., and Lonon, A. M. (1993). Stimulus complexity and information integration in the spontaneous interpretation of line graphs. Appl. Cogn. Psychol. 7: 341–357.

    Google Scholar 

  • Carwell, C. M., Frankenberger, S., and Bernhard, D. (1991). Graphing in depth: Perspectives on the use of three-dimensional graphs to represent lower-dimensional data. Behav. Inform. Technol. 10: 459–474.

    Google Scholar 

  • Carswell, C. M., and Wickens, C. D. (1987). Information integration and the object display: An interaction of task demands and display superiority. Ergonomics 30: 511–527.

    Google Scholar 

  • Chernoff, H. (1973). Using faces to represent points in k-dimensional space graphically. J. Am. Stat. Assoc. 68: 361–368.

    Google Scholar 

  • Clement, J. (1985). Misconceptions in graphing. In Streetfland, L. (ed.), Proceedings of the Ninth International Conference of the International Group for the Psychology of Mathematics Education, IGPME, Utrecht, The Netherlands, Vol. 1, pp. 369–375.

    Google Scholar 

  • Cleveland, W. (1993). Visualizing Data, AT&T Bell Laboratories, Murray Hill, NJ.

    Google Scholar 

  • Cleveland, W. S., Diaconis, P., and McGill, R. (1982). Variables on scatterplots look more highly correlated when the scales are increased. Science 216: 1138–1141.

    Google Scholar 

  • Cleveland, W. S., and McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. J. Am. Stat. Assoc. 77: 541–547.

    Google Scholar 

  • Cleveland, W. S., and McGill, R. (1985). Graphical perception and graphical methods for analyzing scientific data. Science 229: 828–833.

    Google Scholar 

  • Fisher, H. T. (1982). Mapping Information, Abt Books, Cambridge, MA.

    Google Scholar 

  • Fischer, M. H. (2000). Do irrelevant depth cues affect the comprehension of bar graphs? Appl. Cogn. Psychol. 14: 151–162.

    Google Scholar 

  • Freedman, E.G., and Smith, L.D. (1996). The role of data and theory in covariation assesesment: Implications for the theory-ladenness of observation.J. Mind Behav. 17: 321–343.

    Google Scholar 

  • Gattis, M., and Holyoak, K. (1995). Mapping conceptual to spatial relations in visual reasoning. J. Exp. Psychol. Learn. Mem. Cogn. 22: 1–9.

    Google Scholar 

  • Guthrie, J. T., Weber, S., and Kimmerly, N. (1993). Searching documents: Cognitive process and deficits in understanding graphs, tables, and illustrations. Contemp. Educ. Psychol. 18: 186–221.

    Google Scholar 

  • Halford, G. S., Wilson, W. H., and Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behav. Brain Sci. 21: 803–864.

    Google Scholar 

  • Hegarty, M., Quillici, J., Narayanan, N. H., Holmquist, S., and Moreno, R. (1999). Multimedia instruction: Lessons from evaluation of a theory-based design. J. Educ. Multimed. Hypermed. 8: 119–150.

    Google Scholar 

  • Hoffman, R. R., Deitweiler, M., and Lipton, K. S. (1993). General guidance for establishing color standards for meteorological displays. Weather Forecast.

  • Howell, W. C. (1993). Engineering psychology in a changing world. Ann. Rev. Psychol. 231-263.

  • Huber, P. J. (1987). Experiences with three-dimensional scatterplots. J. Am. Stat. Assoc. 82: 448–453.

    Google Scholar 

  • Hunter, B., Crismore, A., and Pearson, P. D. (1987). Visual displays in basal readers and social science textbooks. In Willows, D., and Houghton, H. A. (eds.), The Psychology of Illustration, Vol. 2: Instructional Issues, Springer, New York, pp. 116–135.

    Google Scholar 

  • Janvier, C. (1981). Use of situations in mathematics education. Educ. Stud. Math. 12: 113–122.

    Google Scholar 

  • Jennings, D. L., Amabile, T., and Ross, L. (1982). Informal covariation assessment: Data-based versus theory-based judgements. In Kahneman, D., Slovic, P., and Tversky, A. (eds.), Judgement Under Uncertainty: Heuristics and Biases, Cambridge University Press, Cambridge, England, pp. 211–230.

    Google Scholar 

  • Kaput, J. J. (1987). Representation and mathematics. In Janvier, C. (ed.), Problems of Representation in Mathematics Learning and Problem Solving, Erlbaum, Hillsdale, NJ, pp. 19–26.

    Google Scholar 

  • Kosslyn, S. (1985). Graphics and human information processing: A review of five books. J. Am. Stat. Assoc. 80: 499–512.

    Google Scholar 

  • Kosslyn, S. (1989). Understanding charts and graphs. Appl. Cogn. Psychol. 3: 185–225.

    Google Scholar 

  • Kosslyn, S. M. (1994). Elements of Graph Design, Freeman, New York.

    Google Scholar 

  • Kubovy, M. (1981). Concurrent pitch segregation and the theory of indispensable attributes. In Kubovy, M., and Pomerantz, J. (eds.), Perceptual Organization, Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Larkin, J. H., and Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11: 65–99.

    Google Scholar 

  • Lauer, T. W., and Post, G. V. (1989). Density in scatterplots and the estimation of correlation. Behav. Inform. Technol. 8: 235–244.

    Google Scholar 

  • Legge, G. E., Gu, Y., and Luebker, A. (1989). Efficiency of graphical perception. Percept. Psychophys. 46: 365–374.

    Google Scholar 

  • Lehrer, R., and Romberg, T. (1996). Exploring children's data modeling. Cogn. Instr. 14: 69–108.

    Google Scholar 

  • Leinhardt, G., Zaslavsky, O., and Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Rev. Educ. Res. 60: 1–64.

    Google Scholar 

  • Levy, E., Zacks, J., Tversky, B., and Schiano, D. (1996). Gratuitous graphics: Putting preferences in perspective. Human Factors in Computing Systems: Conference Proceedings, ACM, New York, pp. 42–49.

    Google Scholar 

  • Lewandowsky, S., and Behrens, J. T. (1999). Statistical graphs and maps. In Durso, F., Dumais, S., Nickerson, R., Schvaneveldt, R., Chi, M., and Lindsay, S. (eds.), The Handbook of Applied Cognitive Psychology,Wiley, Chichester, England, pp. 513–549.

    Google Scholar 

  • Lewandowsky, S., and Spence, I. (1989). Discriminating strata in scatterplots. J. Am. Stat. Assoc. 84: 682–688.

    Google Scholar 

  • Lohse, G. L. (1993). A cognitive model of understanding graphical perception. Hum. Comp. Interact. 8: 353–388.

    Google Scholar 

  • Lord, C. G., Ross, L., and Lepper, M. R. (1979). Biased assimilation and attitude polarization: The effects of prior theories on subsequent evidence. J. Pers. Soc. Psychol. 37: 2098–2110.

    Google Scholar 

  • MacDonald-Ross, M. (1977). Graphics in texts. Rev. Res. Educ. 5: 49–85.

    Google Scholar 

  • Maichle, U. (1994). Cognitive processes in understanding line graphs. In Schnotz, W., and Kulhavy, R.W. (eds.), Comprehension of Graphics, Elsevier, Amsterdam.

    Google Scholar 

  • Marchak, F. M., and Marchak, L. C. (1991). Interactive versus passive dynamics and the exploratory analysis of multivariate data. Behav. Res. Methods Instrum. Comput. 23: 296–300.

    Google Scholar 

  • McDermott, L., Rosenquist, M., and vanZee, E. (1987). Students difficulties in connecting graphs and physics: Example from kinematics. Am. J. Phys. 55: 503–513.

    Google Scholar 

  • McKenzie, D. L., and Padilla, M. J. (1986). The construction and validation of the Test of Graphing in Science (TOGS). J. Res. Sci. Teach. 23: 571–579.

    Google Scholar 

  • Merwin, D. H., Vincow, M., and Wickens, C. D. (1994). Visual analysis of scientific data; Comparison of 3d-topographic, color and gray scale displays in a feature detection task. In Proceedings of the 38th Annual Meeting of the Human Factors and Ergonomics Society, Human Factors and Ergonomics Society, Santa Monica, CA.

    Google Scholar 

  • Morrison, J. B., Tversky, B., and Betrancourt, M. (2000). Animation: Does it facilitate learning? Paper presented at the AAAI Spring Symposium on Smart Graphics, March, 2000, AAAI Press.

  • Nachmias, R., and Linn, M. C. (1987). Evaluations of science laboratory data: The role of computer-presented information. J. Res. Sci. Teach. 24: 491–505.

    Google Scholar 

  • Phillips, R. J. (1982). An experimental investigation of layer tints for relief maps in school atlases. Ergonomics 25: 1143–1154.

    Google Scholar 

  • Pinker, S. (1990). A theory of graph comprehension. In Freedle, R. (ed.), Artificial Intelligence and the Future of Testing, Erlbaum, Hillsdale, NJ, pp. 73–126.

    Google Scholar 

  • Preece, J. (1990). Some HCI issues concerned with displaying quantitative information graphically. In Gorny, P., and Tauber, M. J. (eds.), Visualization in Human-Computer Interaction, Springer, New York.

    Google Scholar 

  • Quintana, C., Eng, J., Carra, A., Wu, H., and Soloway, E. (1999). Symphony: A Case Study in Extending Learner-Centered Design Through Process Space Analysis, Paper presented at CHI 99: Conference on Human Factors in Computing Systems, May 19-21, 1999, Pittsburgh, Pennsylvania.

  • Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B., Steinmuller, F., and Leone, T. J. (in press). BGuILE: Stategic and conceptual scaffolds for scientific inquiry in biology classrooms. In Carver, S. M., and Klahr, D. (eds.), Cognition and Instruction: Twenty Five Years of Progress, Erlbaum, Mahvah, NJ.

  • Scardamalia, N., Bereiter, C., and Lamon, M. (1994). The CSILE Project: Trying to bring the classroom into the world. In McGilly, K. (ed.), Classroom Lessons: Integrating Cognitive Theory and Classroom Practice, MIT Press, Cambridge, MA.

    Google Scholar 

  • Schiano, J. D., and Tversky, B. (1992). Structure and strategy in encoding simplified graphs. Mem. Cogn. 20: 12–20.

    Google Scholar 

  • Schmid, C. (1983). Statistical Graphics: Design Principles and Practices, Wiley, New York.

    Google Scholar 

  • Schunn, C. D., and Anderson, J. R. (1999). The generality/specificity of expertise in scientific reasoning. Cogn. Sci. 23: 337–370.

    Google Scholar 

  • Shah, P., and Carpenter, P. A. (1995). Conceptual limitations in comprehending line graphs. J. Exp. Psychol. Gen. 124: 43–61.

    Google Scholar 

  • Shah, P., Mayer, R. E., and Hegarty, M. (1999). Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. J. Educ. Psychol. 91: 690–702.

    Google Scholar 

  • Shah, P. (in press). Graph comprehension: The role of format, content, and individual differences. In Anderson, M., Meyer, B., and Olivier, P. (eds.), Diagrammatic Representation and Reasoning, Springer, New York.

  • Shah, P. (1995). Cognitive Processes in Graph Comprehension, Unpublished doctoral dissertation.

  • Shah, P., and Shellhammer, D. (1999). The Role of Domain Knowledge and Graph Reading Skills in Graph Comprehension, Paper presented at the 1999 Meeting of the Society for Applied Research in Memory and Cognition, Boulder, CO.

  • Simkin, D. K., and Hastie, R. (1986). An information processing analysis of graph perception. J. Am. Stat. Assoc. 82: 454–465.

    Google Scholar 

  • Somerville, S. C., and Bryant, P. E. (1985). Young children's use of spatial coordinates. Child Dev. 56: 604–613.

    Google Scholar 

  • Spence, I. (1990). Visual psychophysics of simple graphical elements, J. Exp. Psychol. Hum. Percept. Perform. 16: 683–692.

    Google Scholar 

  • Stenning, K., and Oberlander, J. (1995). Acognitive theory of graphical and linguistic reasoning: Logic and implementation. Cogn. Sci. 19: 97–140.

    Google Scholar 

  • Stuetzle, W. (1987). Plot windows. J. Am. Stat. Assoc. 82: 466–475.

    Google Scholar 

  • Tufte, E. R. (1983). The Visual Display of Quantitative Information, Graphics, Cheshire, CT.

    Google Scholar 

  • Tversky, B. (in press). Spatial schemas in depictions. In Gattis, M. (ed.), Spatial Schemas and Abstract Thought, MIT Press, Cambridge.

  • Tversky, B., Kugelmass, S., and Winter, A. (1991). Cross-cultural and developmental trends in graphic productions. Cogn. Psychol. 23: 515–557.

    Google Scholar 

  • Tversky, B., and Schiano, D. J. (1989). Perceptual and conceptual factors in distortions inmemory for graphs and maps. J. Exp. Psychol. Gen. 118: 387–398.

    Google Scholar 

  • Vernon, M. D. (1950). The visual presentation of factual information. Br. J. Educ. Psychol. 20: 174–185.

    Google Scholar 

  • Wickens, C.D., Merwin, D. H., and Lin, E. L. (1994). Implications of graphics enhancements for the visualization of scientific data: Dimensional integrality, stereopsis, motion, and mesh. Hum. Fact. 36: 44–61.

    Google Scholar 

  • Wilkinson, L. (1999). Graphs for research in counseling psychology. Counsel. Psychol. 27: 384–407.

    Google Scholar 

  • Winn, B. (1987). Charts, graphs, and diagrams in educational materials. In Willows, D., and Houghton, H. A. (eds.), The Psychology of Illustration, Springer, New York.

    Google Scholar 

  • Zacks, J., and Tversky, B. (1999). Bars and lines: A study of graphic communication. Mem. Cogn. 27: 1073–1079.

    Google Scholar 

  • Zacks, J., Levy, E., Tversky, B., and Schiano, D. J. (1998). Reading bar graphs: Effects of depth cues and graphical context. J. Exp. Psychol. Appl. 4: 119–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, P., Hoeffner, J. Review of Graph Comprehension Research: Implications for Instruction. Educational Psychology Review 14, 47–69 (2002). https://doi.org/10.1023/A:1013180410169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013180410169

Navigation